Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Circ Res ; 132(4): 519-540, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36795845

RESUMO

During cardiac development and morphogenesis, cardiac progenitor cells differentiate into cardiomyocytes that expand in number and size to generate the fully formed heart. Much is known about the factors that regulate initial differentiation of cardiomyocytes, and there is ongoing research to identify how these fetal and immature cardiomyocytes develop into fully functioning, mature cells. Accumulating evidence indicates that maturation limits proliferation and conversely proliferation occurs rarely in cardiomyocytes of the adult myocardium. We term this oppositional interplay the proliferation-maturation dichotomy. Here we review the factors that are involved in this interplay and discuss how a better understanding of the proliferation-maturation dichotomy could advance the utility of human induced pluripotent stem cell-derived cardiomyocytes for modeling in 3-dimensional engineered cardiac tissues to obtain truly adult-level function.


Assuntos
Células-Tronco Pluripotentes Induzidas , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Miócitos Cardíacos/fisiologia , Miocárdio , Diferenciação Celular/fisiologia , Proliferação de Células
2.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674887

RESUMO

The intervertebral disc (IVD) aids in motion and acts to absorb energy transmitted to the spine. With little inherent regenerative capacity, degeneration of the intervertebral disc results in intervertebral disc disease, which contributes to low back pain and significant disability in many individuals. Increasing evidence suggests that IVD degeneration is a disease of the whole joint that is associated with significant inflammation. Moreover, studies show elevated macrophage accumulation within the IVD with increasing levels of disease severity; however, we still need to understand the roles, be they causative or consequential, of macrophages during the degenerative process. In this narrative review, we discuss hallmarks of IVD degeneration, showcase evidence of macrophage involvement during disc degeneration, and explore burgeoning research aimed at understanding the molecular pathways regulating macrophage functions during intervertebral disc degeneration.


Assuntos
Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Disco Intervertebral , Humanos , Degeneração do Disco Intervertebral/metabolismo , Disco Intervertebral/metabolismo , Inflamação/metabolismo , Deslocamento do Disco Intervertebral/metabolismo , Macrófagos/metabolismo
3.
FASEB J ; 35(9): e21799, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34339055

RESUMO

Cardiac fibroblasts (CFBs) support heart function by secreting extracellular matrix (ECM) and paracrine factors, respond to stress associated with injury and disease, and therefore are an increasingly important therapeutic target. We describe how developmental lineage of human pluripotent stem cell-derived CFBs, epicardial (EpiC-FB), and second heart field (SHF-FB) impacts transcriptional and functional properties. Both EpiC-FBs and SHF-FBs exhibited CFB transcriptional programs and improved calcium handling in human pluripotent stem cell-derived cardiac tissues. We identified differences including in composition of ECM synthesized, secretion of growth and differentiation factors, and myofibroblast activation potential, with EpiC-FBs exhibiting higher stress-induced activation potential akin to myofibroblasts and SHF-FBs demonstrating higher calcification and mineralization potential. These phenotypic differences suggest that EpiC-FBs have utility in modeling fibrotic diseases while SHF-FBs are a promising source of cells for regenerative therapies. This work directly contrasts regional and developmental specificity of CFBs and informs CFB in vitro model selection.


Assuntos
Linhagem da Célula/fisiologia , Miofibroblastos/fisiologia , Células-Tronco Pluripotentes/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Matriz Extracelular/fisiologia , Humanos , Miocárdio/patologia , Miócitos Cardíacos/fisiologia , Fenótipo , Transcrição Gênica/fisiologia
4.
Circ Res ; 127(2): 207-224, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32228120

RESUMO

RATIONALE: One goal of cardiac tissue engineering is the generation of a living, human pump in vitro that could replace animal models and eventually serve as an in vivo therapeutic. Models that replicate the geometrically complex structure of the heart, harboring chambers and large vessels with soft biomaterials, can be achieved using 3-dimensional bioprinting. Yet, inclusion of contiguous, living muscle to support pump function has not been achieved. This is largely due to the challenge of attaining high densities of cardiomyocytes-a notoriously nonproliferative cell type. An alternative strategy is to print with human induced pluripotent stem cells, which can proliferate to high densities and fill tissue spaces, and subsequently differentiate them into cardiomyocytes in situ. OBJECTIVE: To develop a bioink capable of promoting human induced pluripotent stem cell proliferation and cardiomyocyte differentiation to 3-dimensionally print electromechanically functional, chambered organoids composed of contiguous cardiac muscle. METHODS AND RESULTS: We optimized a photo-crosslinkable formulation of native ECM (extracellular matrix) proteins and used this bioink to 3-dimensionally print human induced pluripotent stem cell-laden structures with 2 chambers and a vessel inlet and outlet. After human induced pluripotent stem cells proliferated to a sufficient density, we differentiated the cells within the structure and demonstrated function of the resultant human chambered muscle pump. Human chambered muscle pumps demonstrated macroscale beating and continuous action potential propagation with responsiveness to drugs and pacing. The connected chambers allowed for perfusion and enabled replication of pressure/volume relationships fundamental to the study of heart function and remodeling with health and disease. CONCLUSIONS: This advance represents a critical step toward generating macroscale tissues, akin to aggregate-based organoids, but with the critical advantage of harboring geometric structures essential to the pump function of cardiac muscle. Looking forward, human chambered organoids of this type might also serve as a test bed for cardiac medical devices and eventually lead to therapeutic tissue grafting.


Assuntos
Bioimpressão/métodos , Diferenciação Celular , Miócitos Cardíacos/fisiologia , Organoides/fisiologia , Engenharia Tecidual/métodos , Potenciais de Ação , Proliferação de Células , Células Cultivadas , Proteínas da Matriz Extracelular/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Contração Miocárdica , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Organoides/citologia , Organoides/metabolismo
5.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36430922

RESUMO

Bionic-engineered tissues have been proposed for testing the performance of cardiovascular medical devices and predicting clinical outcomes ex vivo. Progress has been made in the development of compliant electronics that are capable of monitoring treatment parameters and being coupled to engineered tissues; however, the scale of most engineered tissues is too small to accommodate the size of clinical-grade medical devices. Here, we show substantial progress toward bionic tissues for evaluating cardiac ablation tools by generating a centimeter-scale human cardiac disk and coupling it to a hydrogel-based soft-pressure sensor. The cardiac tissue with contiguous electromechanical function was made possible by our recently established method to 3D bioprint human pluripotent stem cells in an extracellular matrix-based bioink that allows for in situ cell expansion prior to cardiac differentiation. The pressure sensor described here utilized electrical impedance tomography to enable the real-time spatiotemporal mapping of pressure distribution. A cryoablation tip catheter was applied to the composite bionic tissues with varied pressure. We found a close correlation between the cell response to ablation and the applied pressure. Under some conditions, cardiomyocytes could survive in the ablated region with more rounded morphology compared to the unablated controls, and connectivity was disrupted. This is the first known functional characterization of living human cardiomyocytes following an ablation procedure that suggests several mechanisms by which arrhythmia might redevelop following an ablation. Thus, bionic-engineered testbeds of this type can be indicators of tissue health and function and provide unique insight into human cell responses to ablative interventions.


Assuntos
Biônica , Ablação por Cateter , Humanos , Ablação por Cateter/métodos , Miócitos Cardíacos/metabolismo , Engenharia Tecidual/métodos , Arritmias Cardíacas/metabolismo
6.
Circ Res ; 124(1): 161-169, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30605412

RESUMO

On March 1 and 2, 2018, the National Institutes of Health 2018 Progenitor Cell Translational Consortium, Cardiovascular Bioengineering Symposium, was held at the University of Alabama at Birmingham. Convergence of life sciences and engineering to advance the understanding and treatment of heart failure was the theme of the meeting. Over 150 attendees were present, and >40 scientists presented their latest work on engineering human functional myocardium for disease modeling, drug development, and heart failure research. The scientists, engineers, and physicians in the field of cardiovascular sciences met and discussed the most recent advances in their work and proposed future strategies for overcoming the major roadblocks of cardiovascular bioengineering and therapy. Particular emphasis was given for manipulation and using of stem/progenitor cells, biomaterials, and methods to provide molecular, chemical, and mechanical cues to cells to influence their identity and fate in vitro and in vivo. Collectively, these works are profoundly impacting and progressing toward deciphering the mechanisms and developing novel treatments for left ventricular dysfunction of failing hearts. Here, we present some important perspectives that emerged from this meeting.


Assuntos
Disciplinas das Ciências Biológicas , Engenharia Biomédica , Pesquisa Biomédica , Insuficiência Cardíaca , Comunicação Interdisciplinar , Animais , Comportamento Cooperativo , Difusão de Inovações , Coração/fisiopatologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/terapia , Humanos , Miocárdio/metabolismo , Miocárdio/patologia , Recuperação de Função Fisiológica , Regeneração
7.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638793

RESUMO

Differentiation of pluripotent stem cells to cardiomyocytes is influenced by culture conditions including the extracellular matrices or similar synthetic scaffolds on which they are grown. However, the molecular mechanisms that link the scaffold with differentiation outcomes are not fully known. Here, we determined by immunofluorescence staining and mass spectrometry approaches that extracellular matrix (ECM) engagement by mouse pluripotent stem cells activates critical components of canonical wingless/integrated (Wnt) signaling pathways via kinases of the focal adhesion to drive cardiomyogenesis. These kinases were found to be differentially activated depending on type of ECM engaged. These outcomes begin to explain how varied ECM composition of in vivo tissues with development and in vitro model systems gives rise to different mature cell types, having broad practical applicability for the design of engineered tissues.


Assuntos
Diferenciação Celular , Matriz Extracelular/metabolismo , Adesões Focais/metabolismo , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Via de Sinalização Wnt , Animais , Camundongos
8.
FASEB J ; 33(6): 6767-6777, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30807240

RESUMO

Fusion between cells of different organisms (i.e., xenogeneic hybrids) can occur, and for humans this may occur in the course of tissue transplantation, animal handling, and food production. Previous work shows that conferred advantages are rare in xenogeneic hybrids, whereas risks of cellular dysregulation are high. Here, we explore the transcriptome of individual xenogeneic hybrids of human mesenchymal stem cells and murine cardiomyocytes soon after fusion and ask whether the process is stochastic or involves conserved pathway activation. Toward this end, single-cell RNA sequencing was used to analyze the transcriptomes of hybrid cells with respect to the human and mouse genomes. Consistent with previous work, hybrids possessed a unique transcriptome distinct from either fusion partner but were dominated by the cardiomyocyte transcriptome. New in this work is the documentation that a few genes that were latent in both fusion partners were consistently expressed in hybrids. Specifically, human growth hormone 1, murine ribosomal protein S27, and murine ATP synthase H+ transporting, mitochondrial Fo complex subunit C2 were expressed in nearly all hybrids. The consistent activation of latent genes between hybrids suggests conserved signaling mechanisms that either cause or are the consequence of fusion of these 2 cell types and might serve as a target for limiting unwanted xenogeneic fusion in the future.-Yuan, C., Freeman, B. T., McArdle, T. J., Jung, J. P., Ogle, B. M. Conserved pathway activation following xenogeneic, heterotypic fusion.


Assuntos
Fusão Celular , Hormônio do Crescimento Humano/metabolismo , Células Híbridas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , Transcriptoma , Animais , Células Cultivadas , Técnicas de Cocultura , Sequenciamento de Nucleotídeos em Larga Escala , Hormônio do Crescimento Humano/genética , Humanos , Células Híbridas/citologia , Células-Tronco Mesenquimais/citologia , Camundongos , Miócitos Cardíacos/citologia
9.
Circ Res ; 120(1): 150-165, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-28057791

RESUMO

Current strategies for engineering cardiovascular cells and tissues have yielded a variety of sophisticated tools for studying disease mechanisms, for development of drug therapies, and for fabrication of tissue equivalents that may have application in future clinical use. These efforts are motivated by the need to extend traditional 2-dimensional (2D) cell culture systems into 3D to more accurately replicate in vivo cell and tissue function of cardiovascular structures. Developments in microscale devices and bioprinted 3D tissues are beginning to supplant traditional 2D cell cultures and preclinical animal studies that have historically been the standard for drug and tissue development. These new approaches lend themselves to patient-specific diagnostics, therapeutics, and tissue regeneration. The emergence of these technologies also carries technical challenges to be met before traditional cell culture and animal testing become obsolete. Successful development and validation of 3D human tissue constructs will provide powerful new paradigms for more cost effective and timely translation of cardiovascular tissue equivalents.


Assuntos
Miócitos Cardíacos/fisiologia , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Sistema Cardiovascular/citologia , Técnicas de Cultura de Células/métodos , Humanos
10.
Circ Res ; 120(8): 1318-1325, 2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28069694

RESUMO

RATIONALE: Conventional 3-dimensional (3D) printing techniques cannot produce structures of the size at which individual cells interact. OBJECTIVE: Here, we used multiphoton-excited 3D printing to generate a native-like extracellular matrix scaffold with submicron resolution and then seeded the scaffold with cardiomyocytes, smooth muscle cells, and endothelial cells that had been differentiated from human-induced pluripotent stem cells to generate a human-induced pluripotent stem cell-derived cardiac muscle patch (hCMP), which was subsequently evaluated in a murine model of myocardial infarction. METHODS AND RESULTS: The scaffold was seeded with ≈50 000 human-induced pluripotent stem cell-derived cardiomyocytes, smooth muscle cells, and endothelial cells (in a 2:1:1 ratio) to generate the hCMP, which began generating calcium transients and beating synchronously within 1 day of seeding; the speeds of contraction and relaxation and the peak amplitudes of the calcium transients increased significantly over the next 7 days. When tested in mice with surgically induced myocardial infarction, measurements of cardiac function, infarct size, apoptosis, both vascular and arteriole density, and cell proliferation at week 4 after treatment were significantly better in animals treated with the hCMPs than in animals treated with cell-free scaffolds, and the rate of cell engraftment in hCMP-treated animals was 24.5% at week 1 and 11.2% at week 4. CONCLUSIONS: Thus, the novel multiphoton-excited 3D printing technique produces extracellular matrix-based scaffolds with exceptional resolution and fidelity, and hCMPs fabricated with these scaffolds may significantly improve recovery from ischemic myocardial injury.


Assuntos
Comunicação Celular , Diferenciação Celular , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos de Músculo Liso/metabolismo , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Células Endoteliais/patologia , Células Endoteliais/transplante , Matriz Extracelular/ultraestrutura , Frequência Cardíaca , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos Endogâmicos NOD , Camundongos SCID , Contração Miocárdica , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/cirurgia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/transplante , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/transplante , Fenótipo , Recuperação de Função Fisiológica , Regeneração , Fatores de Tempo , Transfecção , Função Ventricular Esquerda
11.
Adv Exp Med Biol ; 1098: 131-150, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30238369

RESUMO

The cardiac extracellular matrix (cECM) is comprised of proteins and polysaccharides secreted by cardiac cell types, which provide structural and biochemical support to cardiovascular tissue. The roles of cECM proteins and the associated family of cell surface receptor, integrins, have been explored in vivo via the generation of knockout experimental animal models. However, the complexity of tissues makes it difficult to isolate the effects of individual cECM proteins on a particular cell process or disease state. The desire to further dissect the role of cECM has led to the development of a variety of in vitro model systems, which are now being used not only for basic studies but also for testing drug efficacy and toxicity and for generating therapeutic scaffolds. These systems began with 2D coatings of cECM derived from tissue and have developed to include recombinant ECM proteins, ECM fragments, and ECM mimics. Most recently 3D model systems have emerged, made possible by several developing technologies including, and most notably, 3D bioprinting. This chapter will attempt to track the evolution of our understanding of the relationship between cECM and cell behavior from in vivo model to in vitro control systems. We end the chapter with a summary of how basic studies such as these have informed the use of cECM as a direct therapy.


Assuntos
Matriz Extracelular , Miocárdio/ultraestrutura , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Biopolímeros/química , Processos de Crescimento Celular , Transplante de Células/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Matriz Extracelular/química , Matriz Extracelular/fisiologia , Matriz Extracelular/ultraestrutura , Proteínas da Matriz Extracelular/deficiência , Proteínas da Matriz Extracelular/fisiologia , Proteínas da Matriz Extracelular/uso terapêutico , Humanos , Técnicas In Vitro , Camundongos , Camundongos Knockout , Miócitos Cardíacos/citologia , Impressão Tridimensional , Proteínas Recombinantes/uso terapêutico
12.
Adv Exp Med Biol ; 1098: 21-44, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30238364

RESUMO

Cardiovascular disease is the global leading cause of death. One route to address this problem is using biomedical imaging to measure the molecules and structures that surround cardiac cells. This cellular microenvironment, known as the cardiac extracellular matrix, changes in composition and organization during most cardiac diseases and in response to many cardiac treatments. Measuring these changes with biomedical imaging can aid in understanding, diagnosing, and treating heart disease. This chapter supports those efforts by reviewing representative methods for imaging the cardiac extracellular matrix. It first describes the major biological targets of ECM imaging, including the primary imaging target of fibrillar collagen. Then it discusses the imaging methods, describing their current capabilities and limitations. It categorizes the imaging methods into two main categories: organ-scale noninvasive methods and cellular-scale invasive methods. Noninvasive methods can be used on patients, but only a few are clinically available, and others require further development to be used in the clinic. Invasive methods are the most established and can measure a variety of properties, but they cannot be used on live patients. Finally, the chapter concludes with a perspective on future directions and applications of biomedical imaging technologies.


Assuntos
Matriz Extracelular , Coração/diagnóstico por imagem , Animais , Colágeno/ultraestrutura , Ecocardiografia/métodos , Matriz Extracelular/química , Matriz Extracelular/fisiologia , Matriz Extracelular/ultraestrutura , Previsões , Humanos , Imageamento por Ressonância Magnética/métodos , Microscopia/métodos , Miocárdio/citologia , Coloração e Rotulagem/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos
13.
FASEB J ; 29(9): 4036-45, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26085132

RESUMO

Although cancer cell fusion has been suggested as a mechanism of cancer metastasis, the underlying mechanisms defining this process are poorly understood. In a recent study, apoptotic cells were newly identified as a type of cue that induces signaling via phosphatidylserine receptors to promote fusion of myoblasts. The microenvironment of breast tumors is often hypoxic, and because apoptosis is greatly increased in hypoxic conditions, we decided to investigate whether the mechanism of breast cancer cell fusion with mesenchymal stem/multipotent stromal cells (MSCs) involves apoptosis. We used a powerful tool for identification and tracking of hybrids based on bimolecular fluorescence complementation (BiFC) and found that breast cancer cells fused spontaneously with MSCs. This fusion was significantly enhanced with hypoxia and signaling associated with apoptotic cells, especially between nonmetastatic breast cancer cells and MSCs. In addition, the hybrids showed a significantly higher migratory capacity than did the parent cells. Taken together, these findings describe a mechanism by which hypoxia-induced apoptosis stimulates fusion between MSCs and breast tumor cells resulting in hybrids with an enhanced migratory capacity that may enable their dissemination to distant sites or metastases. In the long run, this study may provide new strategies for developing novel drugs for preventing cancer metastasis.


Assuntos
Apoptose , Neoplasias da Mama/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neoplasias da Mama/patologia , Fusão Celular , Hipóxia Celular , Linhagem Celular Tumoral , Técnicas de Cocultura , Feminino , Humanos , Células-Tronco Mesenquimais/patologia , Metástase Neoplásica , Transdução de Sinais
14.
Int J Mol Sci ; 17(9)2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27657058

RESUMO

Although molecular mechanisms and signaling pathways driving invasion and metastasis have been studied for many years, the origin of the population of metastatic cells within the primary tumor is still not well understood. About a century ago, Aichel proposed that cancer cell fusion was a mechanism of cancer metastasis. This hypothesis gained some support over the years, and recently became the focus of many studies that revealed increasing evidence pointing to the possibility that cancer cell fusion probably gives rise to the metastatic phenotype by generating widespread genetic and epigenetic diversity, leading to the emergence of critical populations needed to evolve resistance to the treatment and development of metastasis. In this review, we will discuss the clinical relevance of cancer cell fusion, describe emerging mechanisms of cancer cell fusion, address why inhibiting cancer cell fusion could represent a critical line of attack to limit drug resistance and to prevent metastasis, and suggest one new modality for doing so.

15.
Results Probl Cell Differ ; 71: 407-432, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37996688

RESUMO

Cell-cell fusion is a normal physiological mechanism that requires a well-orchestrated regulation of intracellular and extracellular factors. Dysregulation of this process could lead to diseases such as osteoporosis, malformation of muscles, difficulties in pregnancy, and cancer. Extensive literature demonstrates that fusion occurs between cancer cells and other cell types to potentially promote cancer progression and metastasis. However, the mechanisms governing this process in cancer initiation, promotion, and progression are less well-studied. Fusogens involved in normal physiological processes such as syncytins and associated factors such as phosphatidylserine and annexins have been observed to be critical in cancer cell fusion as well. Some of the extracellular factors associated with cancer cell fusion include chronic inflammation and inflammatory cytokines, hypoxia, and viral infection. The interaction between these extracellular factors and cell's intrinsic factors potentially modulates actin dynamics to drive the fusion of cancer cells. In this review, we have discussed the different mechanisms that have been identified or postulated to drive cancer cell fusion.


Assuntos
Neoplasias , Humanos , Fusão Celular , Neoplasias/patologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-38761090

RESUMO

Cardiomyocyte (CM) proliferation and maturation are highly linked processes, however, the extent to which these processes are controlled by a single signaling axis is unclear. Here, we show the previously undescribed role of Hedgehog (HH)-GLI2-CKS1B cascade in regulation of the toggle between CM proliferation and maturation. Here we show downregulation of GLI-signaling in adult human CM, adult murine CM, and in late-stage hiPSC-CM leading to their maturation. In early-stage hiPSC-CM, inhibition of HH- or GLI-proteins enhanced CM maturation with increased maturation indices, increased calcium handling, and transcriptome. Mechanistically, we identified CKS1B, as a new effector of GLI2 in CMs. GLI2 binds the CKS1B promoter to regulate its expression. CKS1B overexpression in late-stage hiPSC-CMs led to increased proliferation with loss of maturation in CMs. Next, analysis of datasets of patients with heart disease showed a significant enrichment of GLI2-signaling in patients with ischemic heart failure (HF) or dilated-cardiomyopathy (DCM) disease, indicating operational GLI2-signaling in the stressed heart. Thus, the Hh-GLI2-CKS1B axis regulates the proliferation-maturation transition and provides targets to enhance cardiac tissue engineering and regenerative therapies.

17.
Opt Express ; 21(21): 25346-55, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24150376

RESUMO

Multiphoton excited photochemistry is a powerful 3D fabrication tool that produces sub-micron feature sizes. Here we exploit the freeform nature of the process to create models of the extracellular matrix (ECM) of several tissues, where the design blueprint is derived directly from high resolution optical microscopy images (e.g. fluorescence and Second Harmonic Generation). To achieve this goal, we implemented a new form of instrument control, termed modulated raster scanning, where rapid laser shuttering (10 MHz) is used to directly map the greyscale image data to the resulting protein concentration in the fabricated scaffold. Fidelity in terms of area coverage and relative concentration relative to the image data is ~95%. We compare the results to an STL approach, and find the new scheme provides significantly improved performance. We suggest the method will enable a variety of cell-matrix studies in cancer biology and also provide insight into generating scaffolds for tissue engineering.


Assuntos
Algoritmos , Matriz Extracelular/ultraestrutura , Aumento da Imagem/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Microscopia Confocal/instrumentação , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação
18.
Biomacromolecules ; 14(9): 3102-11, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-23875943

RESUMO

Limiting the precise study of the biochemical impact of whole molecule extracellular matrix (ECM) proteins on stem cell differentiation is the lack of 3D in vitro models that can accommodate many different types of ECM. Here we sought to generate such a system while maintaining consistent mechanical properties and supporting stem cell survival. To this end, we used native chemical ligation to cross-link poly(ethylene glycol) macromonomers under mild conditions while entrapping ECM proteins (termed ECM composites) and stem cells. Sufficiently low concentrations of ECM were used to maintain constant storage moduli and pore size. Viability of stem cells in composites was maintained over multiple weeks. ECM of composites encompassed stem cells and directed the formation of distinct structures dependent on ECM type. Thus, we introduce a powerful approach to study the biochemical impact of multiple ECM proteins (either alone or in combination) on stem cell behavior.


Assuntos
Proteínas da Matriz Extracelular/química , Hidrogéis/química , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Mesenquimais/fisiologia , Animais , Técnicas de Cultura de Células , Sobrevivência Celular , Células Cultivadas , Reagentes de Ligações Cruzadas/química , Meios de Cultura , Humanos , Camundongos , Microscopia de Fluorescência , Polietilenoglicóis/química , Porosidade , Termogravimetria , Substâncias Viscoelásticas/química , Viscosidade
19.
Biol Cell ; 104(6): 352-64, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22304470

RESUMO

BACKGROUND INFORMATION: Continued advances in stem cell biology and stem cell transplantation rely on non-invasive biomarkers to characterise cells and stem cell aggregates. The non-invasive quality of such biomarkers is essential because exogenous labels, probes or reporters can unintentionally and dramatically alter stem cell state as can disruption of cell-cell and cell-matrix interactions. Here, we investigate the utility of the autofluorescent metabolite, nicotinamide adenine dinucleotide (NADH), as a non-invasive, intrinsic biomarker of cell death when detected with multi-photon optical-based approaches. To test this possibility, cell death was induced in murine embryoid bodies (EBs) at an early stage (day 3) of differentiation using staurosporine, an ATP-competitive kinase inhibitor of electron transport. Several hours after staurosporine treatment, EBs were stained with a single-colour, live/dead probe. A single-cross-sectional plane of each EB was imaged to detect the fluorescence intensity of the live/dead probe (extrinsic fluorescence) as well as the fluorescence intensity of NADH (intrinsic fluorescence). EBs were assessed at subsequent time points (days 6-12) for the formation of beating areas as an indicator of functional differentiation. RESULTS: Statistical comparison indicated a strong positive correlation between extrinsic fluorescence intensity of the live/dead stain and intrinsic fluorescence of NADH, suggesting that the intensity of NADH fluorescence could be used to reliably and non-invasively assess death of cells of EBs. Furthermore, EBs that had high levels of cell death soon after aggregate formation had limited ability to give rise to functional cardiomyocytes at later time points. CONCLUSIONS: We demonstrate the utility of NADH fluorescence intensity as a non-invasive indicator of cell death in stem cell aggregates when measured using multi-photon excitation. In addition, we show that the degree of stem cell death at early stages of differentiation is predictive for the formation of functional cardiomyocytes.


Assuntos
Morte Celular , Corpos Embrioides/citologia , NAD/análise , Espectrometria de Fluorescência , Animais , Morte Celular/efeitos dos fármacos , Diferenciação Celular , Linhagem Celular , Corpos Embrioides/efeitos dos fármacos , Corpos Embrioides/metabolismo , Fluorescência , Camundongos , Miócitos Cardíacos/citologia , NAD/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Espectrometria de Fluorescência/métodos , Estaurosporina/farmacologia
20.
PNAS Nexus ; 2(6): pgad174, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37303713

RESUMO

Automaticity involves Ca2+ handling at the cell membrane and sarcoplasmic reticulum (SR). Abnormal or acquired automaticity is thought to initiate ventricular arrhythmias associated with myocardial ischemia. Ca2+ flux from mitochondria can influence automaticity, and lysosomes also release Ca2+. Therefore, we tested whether lysosomal Ca2+ flux could influence automaticity. We studied ventricular human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), hiPSC 3D engineered heart tissues (EHTs), and ventricular cardiomyocytes isolated from infarcted mice. Preventing lysosomal Ca2+ cycling reduced automaticity in hiPSC-CMs. Consistent with a lysosomal role in automaticity, activating the transient receptor potential mucolipin channel (TRPML1) enhanced automaticity, and two channel antagonists reduced spontaneous activity. Activation or inhibition of lysosomal transcription factor EB (TFEB) increased or decreased total lysosomes and automaticity, respectively. In adult ischemic cardiomyocytes and hiPSC 3D EHTs, reducing lysosomal Ca2+ release also inhibited automaticity. Finally, TRPML1 was up-regulated in cardiomyopathic patients with ventricular tachycardia (VT) compared with those without VT. In summary, lysosomal Ca2+ handling modulates abnormal automaticity, and reducing lysosomal Ca2+ release may be a clinical strategy for preventing ventricular arrhythmias.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA