RESUMO
BACKGROUND: The declaration of SARS-CoV-2 as a public health emergency of international concern in January 2020 prompted the need to strengthen infection prevention and control (IPC) capacities within health care facilities (HCF). IPC guidelines, with standard and transmission-based precautions to be put in place to prevent the spread of SARS-CoV-2 at these HCFs were developed. Based on these IPC guidelines, a rapid assessment scorecard tool, with 14 components, to enhance assessment and improvement of IPC measures at HCFs was developed. This study assessed the level of implementation of the IPC measures in HCFs across the African Region during the COVID-19 pandemic. METHOD: An observational study was conducted from April 2020 to November 2022 in 17 countries in the African Region to monitor the progress made in implementing IPC standard and transmission-based precautions in primary-, secondary- and tertiary-level HCFs. A total of 5168 primary, secondary and tertiary HCFs were assessed. The HCFs were assessed and scored each component of the tool. Statistical analyses were done using R (version 4.2.0). RESULTS: A total of 11 564 assessments were conducted in 5153 HCFs, giving an average of 2.2 assessments per HCF. The baseline median score for the facility assessments was 60.2%. Tertiary HCFs and those dedicated to COVID-19 patients had the highest IPC scores. Tertiary-level HCFs had a median score of 70%, secondary-level HCFs 62.3% and primary-level HCFs 56.8%. HCFs dedicated to COVID-19 patients had the highest scores, with a median of 68.2%, followed by the mixed facilities that attended to both COVID-19 and non-COVID-19 patients, with 64.84%. On the components, there was a strong correlation between high IPC assessment scores and the presence of IPC focal points in HCFs, the availability of IPC guidelines in HCFs and HCFs that had all their health workers trained in basic IPC. CONCLUSION: In conclusion, a functional IPC programme with a dedicated focal person is a prerequisite for implementing improved IPC measures at the HCF level. In the absence of an epidemic, the general IPC standards in HCFs are low, as evidenced by the low scores in the non-COVID-19 treatment centres.
Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Pandemias/prevenção & controle , SARS-CoV-2 , Instalações de Saúde , Controle de Infecções , Atenção à SaúdeRESUMO
Successive waves of COVID-19 transmission have led to exponential increases in new infections globally. In this study, we have applied a decision-making tool to assess the risk of continuing transmission to inform decisions on tailored public health and social measures (PHSM) using data on cases and deaths reported by Member States to the WHO Regional Office for Africa as of 31 December 2020. Transmission classification and health system capacity were used to assess the risk level of each country to guide implementation and adjustments to PHSM. Two countries out of 46 assessed met the criteria for sporadic transmission, one for clusters of cases, and 43 (93.5%) for community transmission (CT) including three with uncontrolled disease incidence (Eswatini, Namibia and South Africa). Health system response's capacities were assessed as adequate in two countries (4.3%), moderate in 13 countries (28.3%) and limited in 31 countries (64.4%). The risk level, calculated as a combination of transmission classification and health system response's capacities, was assessed at level 0 in one country (2.1%), level 1 in two countries (4.3%), level 2 in 11 countries (23.9%) and level 3 in 32 (69.6%) countries. The scale of severity ranged from 0 to 4, with 0 the lowest. CT coupled with limited response capacity resulted in a level 3 risk assessment in most countries. Countries at level 3 should be considered as priority focus for additional assistance, in order to prevent the risk rising to level 4, which may necessitate enforcing hard and costly lockdown measures. The large number of countries at level 3 indicates the need for an effective risk management system to be used as a basis for adjusting PHSM at national and sub-national levels.
Assuntos
COVID-19/epidemiologia , Tomada de Decisões , SARS-CoV-2 , Organização Mundial da Saúde , África/epidemiologia , Atenção à Saúde , Humanos , Administração em Saúde Pública , Medição de RiscoRESUMO
Epidemic intelligence activities are undertaken by the WHO Regional Office for Africa to support member states in early detection and response to outbreaks to prevent the international spread of diseases. We reviewed epidemic intelligence activities conducted by the organisation from 2017 to 2020, processes used, key results and how lessons learned can be used to strengthen preparedness, early detection and rapid response to outbreaks that may constitute a public health event of international concern. A total of 415 outbreaks were detected and notified to WHO, using both indicator-based and event-based surveillance. Media monitoring contributed to the initial detection of a quarter of all events reported. The most frequent outbreaks detected were vaccine-preventable diseases, followed by food-and-water-borne diseases, vector-borne diseases and viral haemorrhagic fevers. Rapid risk assessments generated evidence and provided the basis for WHO to trigger operational processes to provide rapid support to member states to respond to outbreaks with a potential for international spread. This is crucial in assisting member states in their obligations under the International Health Regulations (IHR) (2005). Member states in the region require scaled-up support, particularly in preventing recurrent outbreaks of infectious diseases and enhancing their event-based surveillance capacities with automated tools and processes.
Assuntos
Epidemias/prevenção & controle , Vigilância em Saúde Pública/métodos , Organização Mundial da Saúde/organização & administração , África/epidemiologia , Controle de Doenças Transmissíveis , Doenças Transmissíveis/epidemiologia , Surtos de Doenças/prevenção & controle , Surtos de Doenças/estatística & dados numéricos , Saúde Global , Humanos , Medição de RiscoRESUMO
BACKGROUND: Electronic reporting of integrated disease surveillance and response (eIDSR) was implemented in Adamawa and Yobe states, Northeastern Nigeria, as an innovative strategy to improve disease reporting. Its objectives were to improve the timeliness and completeness of IDSR reporting by health facilities, prompt identification of public health events, timely information sharing, and public health action. We evaluated the project to determine whether it met its set objectives. METHOD: We conducted a cross-sectional study to assess and document the lessons learned from the project. We reviewed the performance of the local government areas (LGAs) on timeliness and completeness of reporting, rumors identification, and reporting on the eIDSR and the traditional paper-based system using a checklist. Respondents were interviewed online on the relevance, efficiency, sustainability, project progress and effectiveness, the effectiveness of management, and potential impact and scalability of the strategy using structured questionnaires. Data were cleaned, analyzed, and presented as proportions using an MS Excel spreadsheet. Responses were also presented as direct quotes. RESULTS: The number of health facilities reporting IDSR increased from 103 to 228 (117%) before and after implementation of the eIDSR respectively. The timeliness of reporting was 43% in the LGA compared to 73% in health facilities implementing eIDSR. The completeness of IDSR reports in the last 6 months before the evaluation was ≥85%. Of the 201 rumors identified and verified, 161 (80%) were from the eIDSR pilot sites. The majority of the stakeholders interviewed believed that eIDSR met its predetermined objectives for public health surveillance. The benefits of eIDSR included timely reporting and response to alerts and disease outbreaks, improved timeliness, and completeness of reporting, and supportive supervision to the operational levels. The strategy helped stakeholders to appreciate their roles in public health surveillance. CONCLUSION: The eIDSR has increased the number of health facilities reporting IDSR, enabled early identification, reporting, and verification of alerts, improved timeliness and completeness of reports, and supportive supervision of staff at the operational levels. It was well accepted by the stakeholder as a system that made reporting easy with the potential to improve the public health surveillance system in Nigeria.
Assuntos
Surtos de Doenças , Vigilância em Saúde Pública , Estudos Transversais , Eletrônica , Humanos , Nigéria/epidemiologia , Vigilância da PopulaçãoRESUMO
BACKGROUND: In 2017 the Nigerian Ministry of Health notified the World Health Organization (WHO) of an outbreak of hepatitis E located in the north-east region of the country with 146 cases with 2 deaths. The analysis of the hepatitis E virus (HEV) genotypes responsible for the outbreak revealed the predominance of HEV genotypes 1 (HEV-1) and 2 (HEV-2). Molecular data of HEV-2 genomes are limited; therefore we characterized a HEV-2 strain of the outbreak in more detail. FINDING: The full-length genome sequence of an HEV-2 strain (NG/17-0500) from the outbreak was amplified using newly designed consensus primers. Comparison with other HEV complete genome sequences, including the only HEV-2 strain (Mex-14) with available complete genome sequences and the availability of data of partial HEV-2 sequences from Sub-Saharan Africa, suggests that NG/17-0500 belongs to HEV subtype 2b (HEV-2b). CONCLUSIONS: We identified a novel HEV-2b strain from Sub-Saharan Africa, which is the second complete HEV-2 sequence to date, whose natural history and epidemiology merit further investigation.
Assuntos
Surtos de Doenças , Genoma Viral/genética , Vírus da Hepatite E/classificação , Vírus da Hepatite E/isolamento & purificação , Hepatite E/epidemiologia , Hepatite E/virologia , RNA Viral/genética , DNA Complementar/genética , Genótipo , Hepatite E/sangue , Vírus da Hepatite E/genética , Humanos , Nigéria/epidemiologia , Filogenia , RNA Viral/sangue , Análise de Sequência de DNA , Análise de Sequência de ProteínaRESUMO
On 31 December 2019, the Municipal Health Commission of Wuhan, China, reported a cluster of atypical pneumonia cases. On 5 January 2020, the WHO publicly released a Disease Outbreak News (DON) report, providing information about the pneumonia cases, implemented response interventions, and WHO's risk assessment and advice on public health and social measures. Following 9 additional DON reports and 209 daily situation reports, on 17 August 2020, WHO published the first edition of the COVID-19 Weekly Epidemiological Update (WEU). On 1 September 2023, the 158th edition of the WEU was published on WHO's website, marking its final issue. Since then, the WEU has been replaced by comprehensive global epidemiological updates on COVID-19 released every 4 weeks. During the span of its publication, the webpage that hosts the WEU and the COVID-19 Operational Updates was accessed annually over 1.4 million times on average, with visits originating from more than 100 countries. This article provides an in-depth analysis of the WEU process, from data collection to publication, focusing on the scope, technical details, main features, underlying methods, impact and limitations. We also discuss WHO's experience in disseminating epidemiological information on the COVID-19 pandemic at the global level and provide recommendations for enhancing collaboration and information sharing to support future health emergency responses.
Assuntos
COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Saúde Pública , Organização Mundial da SaúdeRESUMO
BACKGROUND: Globally, since 1 January 2020 and as of 24 January 2023, there have been over 664 million cases of COVID-19 and over 6.7 million deaths reported to WHO. WHO developed an evidence-based alert system, assessing public health risk on a weekly basis in 237 countries, territories and areas from May 2021 to June 2022. This aimed to facilitate the early identification of situations where healthcare capacity may become overstretched. METHODS: The process involved a three-stage mixed methods approach. In the first stage, future deaths were predicted from the time series of reported cases and deaths to produce an initial alert level. In the second stage, this alert level was adjusted by incorporating a range of contextual indicators and accounting for the quality of information available using a Bayes classifier. In the third stage, countries with an alert level of 'High' or above were added to an operational watchlist and assistance was deployed as needed. RESULTS: Since June 2021, the system has supported the release of more than US$27 million from WHO emergency funding, over 450 000 rapid antigen diagnostic testing kits and over 6000 oxygen concentrators. Retrospective evaluation indicated that the first two stages were needed to maximise sensitivity, where 44% (IQR 29%-67%) of weekly watchlist alerts would not have been identified using only reported cases and deaths. The alerts were timely and valid in most cases; however, this could only be assessed on a non-representative sample of countries with hospitalisation data available. CONCLUSIONS: The system provided a standardised approach to monitor the pandemic at the country level by incorporating all available data on epidemiological analytics and contextual assessments. While this system was developed for COVID-19, a similar system could be used for future outbreaks and emergencies, with necessary adjustments to parameters and indicators.
Assuntos
COVID-19 , Saúde Pública , Humanos , Teorema de Bayes , Surtos de Doenças , Estudos Retrospectivos , Organização Mundial da SaúdeRESUMO
BACKGROUND: In May 2022, several countries with no history of sustained community transmission of mpox (formerly known as monkeypox) notified WHO of new mpox cases. These cases were soon followed by a large-scale outbreak, which unfolded across the world, driven by local, in-country transmission within previously unaffected countries. On July 23, 2022, WHO declared the outbreak a Public Health Emergency of International Concern. Here, we aim to describe the main epidemiological features of this outbreak, the largest reported to date. METHODS: In this analysis of global surveillance data we analysed data for all confirmed mpox cases reported by WHO Member States through the global surveillance system from Jan 1, 2022, to Jan 29, 2023. Data included daily aggregated numbers of mpox cases by country and a case reporting form (CRF) containing information on demographics, clinical presentation, epidemiological exposure factors, and laboratory testing. We used the data to (1) describe the key epidemiological and clinical features of cases; (2) analyse risk factors for hospitalisation (by multivariable mixed-effects binary logistic regression); and (3) retrospectively analyse transmission trends. Sequencing data from GISAID and GenBank were used to analyse monkeypox virus (MPXV) genetic diversity. FINDINGS: Data from 82â807 cases with submitted CRFs were included in the analysis. Cases were primarily due to clade IIb MPXV (mainly lineage B.1, followed by lineage A.2). The outbreak was driven by transmission among males (73â560 [96·4%] of 76â293 cases) who self-identify as men who have sex with men (25â938 [86·9%] of 29â854 cases). The most common reported route of transmission was sexual contact (14â941 [68·7%] of 21â749). 3927 (7·3%) of 54â117 cases were hospitalised, with increased odds for those aged younger than 5 years (adjusted odds ratio 2·12 [95% CI 1·32-3·40], p=0·0020), aged 65 years and older (1·54 [1·05-2·25], p=0·026), female cases (1·61 [1·35-1·91], p<0·0001), and for cases who are immunosuppressed either due to being HIV positive and immunosuppressed (2·00 [1·68-2·37], p<0·0001), or other immunocompromising conditions (3·47 [1·84-6·54], p=0·0001). INTERPRETATION: Continued global surveillance allowed WHO to monitor the epidemic, identify risk factors, and inform the public health response. The outbreak can be attributed to clade IIb MPXV spread by newly described modes of transmission. FUNDING: WHO Contingency Fund for Emergencies. TRANSLATIONS: For the French and Spanish translations of the abstract see Supplementary Materials section.
Assuntos
Mpox , Minorias Sexuais e de Gênero , Masculino , Feminino , Humanos , Homossexualidade Masculina , Estudos Retrospectivos , Surtos de DoençasRESUMO
The onset of the pandemic revealed the health system inequities and inadequate preparedness, especially in the African continent. Over the past months, African countries have ensured optimum pandemic response. However, there is still a need to build further resilient health systems that enhance response and transition from the acute phase of the pandemic to the recovery interpandemic/preparedness phase. Guided by the lessons learnt in the response and plausible pandemic scenarios, the WHO Regional Office for Africa has envisioned a transition framework that will optimise the response and enhance preparedness for future public health emergencies. The framework encompasses maintaining and consolidating the current response capacity but with a view to learning and reshaping them by harnessing the power of science, data and digital technologies, and research innovations. In addition, the framework reorients the health system towards primary healthcare and integrates response into routine care based on best practices/health system interventions. These elements are significant in building a resilient health system capable of addressing more effectively and more effectively future public health crises, all while maintaining an optimal level of essential public health functions. The key elements of the framework are possible with countries following three principles: equity (the protection of all vulnerable populations with no one left behind), inclusiveness (full engagement, equal participation, leadership, decision-making and ownership of all stakeholders using a multisectoral and transdisciplinary, One Health approach), and coherence (to reduce the fragmentation, competition and duplication and promote logical, consistent programmes aligned with international instruments).
Assuntos
COVID-19 , Planos de Sistemas de Saúde , Pandemias , Humanos , África/epidemiologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Pandemias/prevenção & controle , Organização Mundial da Saúde , Planos de Sistemas de Saúde/organização & administraçãoRESUMO
BACKGROUND: The ongoing COVID-19 pandemic in Africa is an urgent public health crisis. Estimated models projected over 150,000 deaths and 4,600,000 hospitalizations in the first year of the disease in the absence of adequate interventions. Therefore, electronic contact tracing and surveillance have critical roles in decreasing COVID-19 transmission; yet, if not conducted properly, these methods can rapidly become a bottleneck for synchronized data collection, case detection, and case management. While the continent is currently reporting relatively low COVID-19 cases, digitized contact tracing mechanisms and surveillance reporting are necessary for standardizing real-time reporting of new chains of infection in order to quickly reverse growing trends and halt the pandemic. OBJECTIVE: This paper aims to describe a COVID-19 contact tracing smartphone app that includes health facility surveillance with a real-time visualization platform. The app was developed by the AFRO (African Regional Office) GIS (geographic information system) Center, in collaboration with the World Health Organization (WHO) emergency preparedness and response team. The app was developed through the expertise and experience gained from numerous digital apps that had been developed for polio surveillance and immunization via the WHO's polio program in the African region. METHODS: We repurposed the GIS infrastructures of the polio program and the database structure that relies on mobile data collection that is built on the Open Data Kit. We harnessed the technology for visualization of real-time COVID-19 data using dynamic dashboards built on Power BI, ArcGIS Online, and Tableau. The contact tracing app was developed with the pragmatic considerations of COVID-19 peculiarities. The app underwent testing by field surveillance colleagues to meet the requirements of linking contacts to cases and monitoring chains of transmission. The health facility surveillance app was developed from the knowledge and assessment of models of surveillance at the health facility level for other diseases of public health importance. The Integrated Supportive Supervision app was added as an appendage to the pre-existing paper-based surveillance form. These two mobile apps collected information on cases and contact tracing, alongside alert information on COVID-19 reports at the health facility level; the information was linked to visualization platforms in order to enable actionable insights. RESULTS: The contact tracing app and platform were piloted between April and June 2020; they were then put to use in Zimbabwe, Benin, Cameroon, Uganda, Nigeria, and South Sudan, and their use has generated some palpable successes with respect to COVID-19 surveillance. However, the COVID-19 health facility-based surveillance app has been used more extensively, as it has been used in 27 countries in the region. CONCLUSIONS: In light of the above information, this paper was written to give an overview of the app and visualization platform development, app and platform deployment, ease of replicability, and preliminary outcome evaluation of their use in the field. From a regional perspective, integration of contact tracing and surveillance data into one platform provides the AFRO with a more accurate method of monitoring countries' efforts in their response to COVID-19, while guiding public health decisions and the assessment of risk of COVID-19.
Assuntos
COVID-19 , Poliomielite , COVID-19/epidemiologia , COVID-19/prevenção & controle , Busca de Comunicante/métodos , Sistemas de Informação Geográfica , Humanos , Pandemias/prevenção & controle , Poliomielite/epidemiologia , Poliomielite/prevenção & controleRESUMO
During the first wave of the COVID-19 pandemic, sub-Saharan African countries experienced comparatively lower rates of SARS-CoV-2 infections and related deaths than in other parts of the world, the reasons for which remain unclear. Yet, there was also considerable variation between countries. Here, we explored potential drivers of this variation among 46 of the 47 WHO African region Member States in a cross-sectional study. We described five indicators of early COVID-19 spread and severity for each country as of 29 November 2020: delay in detection of the first case, length of the early epidemic growth period, cumulative and peak attack rates and crude case fatality ratio (CFR). We tested the influence of 13 pre-pandemic and pandemic response predictor variables on the country-level variation in the spread and severity indicators using multivariate statistics and regression analysis. We found that wealthier African countries, with larger tourism industries and older populations, had higher peak (p<0.001) and cumulative (p<0.001) attack rates, and lower CFRs (p=0.021). More urbanised countries also had higher attack rates (p<0.001 for both indicators). Countries applying more stringent early control policies experienced greater delay in detection of the first case (p<0.001), but the initial propagation of the virus was slower in relatively wealthy, touristic African countries (p=0.023). Careful and early implementation of strict government policies were likely pivotal to delaying the initial phase of the pandemic, but did not have much impact on other indicators of spread and severity. An over-reliance on disruptive containment measures in more resource-limited contexts is neither effective nor sustainable. We thus urge decision-makers to prioritise the reduction of resource-based health disparities, and surveillance and response capacities in particular, to ensure global resilience against future threats to public health and economic stability.
Assuntos
COVID-19 , Pandemias , Estudos Transversais , Humanos , SARS-CoV-2 , Organização Mundial da SaúdeRESUMO
Hepatitis E virus genotype 1 (HEV-1) is associated with large epidemics. Notably, HEV subtype 1e (HEV-1e) has caused HEV outbreaks in sub-Saharan Africa. We report here the second full-length genome sequence of an HEV-1e strain (NG/17-0503) from a recent outbreak in Nigeria in 2017. It shares 94.2% identity with an HEV-1e strain from Chad.