Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(10): 13139-13149, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38415664

RESUMO

Lifetime-reconfigurable soft robots have emerged as a new class of robots, emphasizing the unmet needs of futuristic sustainability and security. Trigger-transient materials that can both actuate and degrade on-demand are crucial for achieving life-reconfigurable soft robots. Here, we propose the use of transient and magnetically actuating materials that can decompose under ultraviolet light and heat, achieved by adding photo-acid generator (PAG) and magnetic particles (Sr-ferrite) to poly(propylene carbonate) (PPC). Chemical and thermal analyses reveal that the mechanism of PPC-PAG decomposition occurs through PPC backbone cleavage by the photo-induced acid. The self-assembled monolayer (SAM) encapsulation of Sr-ferrite preventing the interaction with the PAG allowed the transience of magnetic soft actuators. We demonstrate remotely controllable and degradable magnetic soft kirigami actuators using blocks with various magnetized directions. This study proposes novel approaches for fabricating lifetime-configurable magnetic soft actuators applicable to diverse environments and applications, such as enclosed/sealed spaces and security/military devices.

2.
Polymers (Basel) ; 15(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37177151

RESUMO

Three-dimensional (3D) printing has various applications in many fields, such as soft electronics, robotic systems, biomedical implants, and the recycling of thermoplastic composite materials. Three-dimensional printing, which was only previously available for prototyping, is currently evolving into a technology that can be utilized by integrating various materials into customized structures in a single step. Owing to the aforementioned advantages, multi-functional 3D objects or multi-material-designed 3D patterns can be fabricated. In this study, we designed and fabricated 3D-printed expandable structural electronics in a substrateless auxetic pattern that can be adapted to multi-dimensional deformation. The printability and electrical conductivity of a stretchable conductor (Ag-RTV composite) were optimized by incorporating a lubricant. The Ag-RTV and RTV were printed in the form of conducting voxels and frame voxels through multi-nozzle printing and were arranged in a negative Poisson's ratio pattern with a missing rib structure, to realize an expandable passive component. In addition, the expandable structural electronics were embedded in a soft actuator via one-step printing, confirming the possibility of fabricating stable interconnections in expanding deformation via a missing rib pattern.

3.
Sci Adv ; 9(34): eadh9962, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37624899

RESUMO

Developing soft robots that can control their own life cycle and degrade on-demand while maintaining hyperelasticity is a notable research challenge. On-demand degradable soft robots, which conserve their original functionality during operation and rapidly degrade under specific external stimulation, present the opportunity to self-direct the disappearance of temporary robots. This study proposes soft robots and materials that exhibit excellent mechanical stretchability and can degrade under ultraviolet light by mixing a fluoride-generating diphenyliodonium hexafluorophosphate with a silicone resin. Spectroscopic analysis revealed the mechanism of Si─O─Si backbone cleavage using fluoride ion (F-) and thermal analysis indicated accelerated decomposition at elevated temperatures. In addition, we demonstrated a robotics application by fabricating electronics integrated gaiting robot and a fully closed-loop trigger disintegration robot for autonomous, application-oriented functionalities. This study provides a simple yet novel strategy for designing life cycle mimicking soft robotics that can be applied to reduce soft robotics waste, explore hazardous areas, and ensure hardware security with on-demand destructive material platforms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA