Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 131(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29678906

RESUMO

Myofibroblasts play key roles in wound healing and pathological fibrosis. Here, we used an RNAi screen to characterize myofibroblast regulatory genes, using a high-content imaging approach to quantify α-smooth muscle actin stress fibers in cultured human fibroblasts. Screen hits were validated on physiological compliance hydrogels, and selected hits tested in primary fibroblasts from patients with idiopathic pulmonary fibrosis. Our RNAi screen led to the identification of STAT3 as an essential mediator of myofibroblast activation and function. Strikingly, we found that STAT3 phosphorylation, while responsive to exogenous ligands on both soft and stiff matrices, is innately active on a stiff matrix in a ligand/receptor-independent, but ROCK- and JAK2-dependent fashion. These results demonstrate how a cytokine-inducible signal can become persistently activated by pathological matrix stiffening. Consistent with a pivotal role for this pathway in driving persistent fibrosis, a STAT3 inhibitor attenuated murine pulmonary fibrosis when administered in a therapeutic fashion after bleomycin injury. Our results identify novel genes essential for the myofibroblast phenotype, and point to STAT3 as an important target in pulmonary fibrosis and other fibrotic diseases.


Assuntos
Janus Quinase 2/metabolismo , Miofibroblastos/metabolismo , Fibrose Pulmonar/genética , Interferência de RNA , Fator de Transcrição STAT3/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Feminino , Fibroblastos/metabolismo , Humanos , Janus Quinase 2/genética , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Fibrose Pulmonar/metabolismo , Fator de Transcrição STAT3/genética , Transdução de Sinais , Quinases Associadas a rho/genética
2.
Proc Natl Acad Sci U S A ; 109(11): 4146-51, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22315426

RESUMO

Mammalian cells are capable of delivering multiple types of membrane capsules extracellularly. The limiting membrane of late endosomes can fuse with the plasma membrane, leading to the extracellular release of multivesicular bodies (MVBs), initially contained within the endosomes, as exosomes. Budding viruses exploit the TSG101 protein and endosomal sorting complex required for transport (ESCRT) machinery used for MVB formation to mediate the egress of viral particles from host cells. Here we report the discovery of a virus-independent cellular process that generates microvesicles that are distinct from exosomes and which, like budding viruses, are produced by direct plasma membrane budding. Such budding is driven by a specific interaction of TSG101 with a tetrapeptide PSAP motif of an accessory protein, arrestin domain-containing protein 1 (ARRDC1), which we show is localized to the plasma membrane through its arrestin domain. This interaction results in relocation of TSG101 from endosomes to the plasma membrane and mediates the release of microvesicles that contain TSG101, ARRDC1, and other cellular proteins. Unlike exosomes, which are derived from MVBs, ARRDC1-mediated microvesicles (ARMMs) lack known late endosomal markers. ARMMs formation requires VPS4 ATPase and is enhanced by the E3 ligase WWP2, which interacts with and ubiquitinates ARRDC1. ARRDC1 protein discharged into ARMMs was observed in co-cultured cells, suggesting a role for ARMMs in intercellular communication. Our findings reveal an intrinsic cellular mechanism that results in direct budding of microvesicles from the plasma membrane, providing a formal paradigm for the evolutionary recruitment of ESCRT proteins in the release of budding viruses.


Assuntos
Arrestina/química , Arrestina/metabolismo , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fatores de Transcrição/metabolismo , Vesículas Transportadoras/metabolismo , Adenosina Trifosfatases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Biomarcadores/metabolismo , Membrana Celular/ultraestrutura , Exossomos/metabolismo , Espaço Extracelular/metabolismo , Células HEK293 , Humanos , Fusão de Membrana , Modelos Biológicos , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Vesículas Transportadoras/ultraestrutura , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Liberação de Vírus
3.
J Biol Chem ; 287(8): 6025-34, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22215663

RESUMO

Exposure to the toxic metalloid arsenic is associated with diabetes and cancer and causes proteotoxicity and endoplasmic reticulum (ER) stress at the cellular level. Adaptive responses to ER stress are implicated in cancer and diabetes; thus, understanding mechanisms of arsenic-induced ER stress may offer insights into pathogenesis. Here, we identify genes required for arsenite-induced ER stress response in a genome-wide RNAi screen. Using an shRNA library targeting ∼20,000 human genes, together with an ER stress cell model, we performed flow cytometry-based cell sorting to isolate cells with defective response to arsenite. Our screen discovered several genes modulating arsenite-induced ER stress, including sodium-dependent neutral amino acid transporter, SNAT2. SNAT2 expression and activity are up-regulated by arsenite, in a manner dependent on activating transcription factor 4 (ATF4), an important mediator of the integrated stress response. Inhibition of SNAT2 expression or activity or deprivation of its primary substrate, glutamine, specifically suppressed ER stress induced by arsenite but not tunicamycin. Induction of SNAT2 is coincident with the activation of the nutrient-sensing mammalian target of rapamycin (mTOR) pathway, which is at least partially required for arsenite-induced ER stress. Importantly, inhibition of the SNAT2 or the System L transporter, LAT1, suppressed mTOR activation by arsenite, supporting a role for these transporters in modulating amino acid signaling. These findings reveal SNAT2 as an important and specific mediator of arsenic-induced ER stress, and suggest a role for aberrant mTOR activation in arsenic-related human diseases. Furthermore, this study demonstrates the utility of RNAi screens in elucidating cellular mechanisms of environmental toxins.


Assuntos
Sistema A de Transporte de Aminoácidos/metabolismo , Arsênio/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Poluentes Ambientais/toxicidade , Genômica/métodos , Interferência de RNA , Fator 4 Ativador da Transcrição/metabolismo , Sistema A de Transporte de Aminoácidos/deficiência , Sistema A de Transporte de Aminoácidos/genética , Arsenitos/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA