Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 13(1): 686-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23646797

RESUMO

The optical properties of self-assembled TiO2/SiO2 double-layered photonic crystals were examined using SiO2 and TiO2 nanopowders. The SiO2 and TiO2 nanopowders were fabricated using the well-known Stöber process, and the double-layered structure was self-assembled by an evaporation method. Self-assembled TiO2 thin film was coated at a 1.2 mm thickness by the evaporation process, and 3 atomic layers of the SiO2 layer was coated onto the TiO2 thin film. The relative reflectance peak intensity of the photonic bandgap in the specimen was 13% before thermal treatment. The peak value was increased by sequential heat-treatments and reached the highest value of 21% at 400 degrees C.


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Dióxido de Silício/química , Ressonância de Plasmônio de Superfície/métodos , Titânio/química , Luz , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Fótons , Espalhamento de Radiação , Propriedades de Superfície
2.
J Nanosci Nanotechnol ; 12(2): 1713-6, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22630036

RESUMO

The optical properties of electrochemically deposited ZnO thin films on colloidal crystal film of SiO2 microspheres structures were studied. Colloidal crystal film of SiO2 microspheres were self-assembled by evaporation using SiO2 in solution at a constant 0.1 wt%. ZnO in thin films was then electrochemically deposited on to colloidal crystal film of SiO2 microspheres. During electrochemical deposition, the content of Zn(NO3)2 x 6H2O in solution was 5 wt%, and the process's conditions were varied between of 2-4 V and 30-120 s at room temperature, with subsequent heat-treatment between 200 and 400 degrees C. A smooth surface and uniform thickness of 1.8 microm were obtained at 3 V for 90 s. The highest PL peak intensity was obtained in the ZnO thin film heat-treated at 400 degrees C. The double layered ZnO/SiO2 colloidal crystals showed clearly better emission properties than the SiO2/ZnO and ZnO structures.

3.
J Nanosci Nanotechnol ; 11(2): 1774-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21456289

RESUMO

An alpha-Al2O3 and MgAl2O3 spinel phase doped alpha-Al2O3 nanopowders were fabricated by the thermal decomposition and synthetic of ammonium aluminum carbonate hydroxide (AACH). Crystallite size of 5 to 8 nm were fabricated when reaction temperature of AACH was low, 8 degrees C, and the highest [NH4+][AlO(OH)2-][HCO3] ionic concentration of pH 10 from the ammonium hydrogen carbonate (AHC) aqueous solution. The phase transformation of amorphous-s, theta-, alpha-Al2O3, MgAl2O3 spinel phases was examined at each temperature according to the amount of Mg(NO3)2 x 6H2O and AACH. A time-temperature-transformation (TTT) diagram for thermal decomposition in air was determined. Homogeneous, spherical alpha-Al2O3 nanopowders with a particle size of 60 nm were obtained by firing the crystallites, which had been synthesized from AACH at pH 10 and 8 degrees C, at 1050 degrees C for 6 h in air.

4.
J Nanosci Nanotechnol ; 11(2): 1766-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21456287

RESUMO

The enhancement of out-coupling efficiency of organic light emitting diode (OLED) using SiO2-polymer composite layers was investigated. The SiO2-polymer composite was made from a SiO2 nanopowder and commercial UV-hardeners. The composite layer was coated on glass by dip-coating method in a SiO2 suspension, followed by spin-coating of 1 microm thick UV-hardener of was found that the optical properties were depend on the quantity of SiO2 nanopowder in the composite layer and dispersion of SiO2 suspension. 194/440 nm size of SiO2 nanopowders were added to the composite layer to enhance the light scattering effect. The OLED device which the SiO2-polymer composite layer was applied showed enhanced out-coupling efficiency around 30%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA