Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963562

RESUMO

Understanding the mechanisms underlying vascular regeneration in the heart is crucial for developing novel therapeutic strategies for myocardial ischemia. This study investigates the contribution of bone marrow-derived cells to endothelial cell populations in the heart, and their role in cardiac function and coronary circulation following repetitive ischemia (RI). Chimeric rats were created by transplanting BM cells from GFP female rats into irradiated male recipients. After engraftment chimeras were subjected to RI for 17 days. Vascular growth was assessed from recovery of cardiac function and increases in myocardial blood flow during LAD occlusion. After sorting GFP+ BM cells from heart and bone of Control and RI rats, single-cell RNA sequencing was implemented to determine the fate of BM cells. Our in vivo RI model demonstrated an improvement in cardiac function and myocardial blood flow after 17 days of RI with increased capillary density in the rats subjected to RI compared to Controls. Single-cell RNA sequencing of bone marrow cells isolated from rats' hearts identified distinct endothelial cell (EC) subpopulations. These ECs exhibited heterogeneous gene expression profiles and were enriched for markers of capillary, artery, lymphatic, venous, and immune ECs. Furthermore, BM-derived ECs in the RI group showed an angiogenic profile, characterized by upregulated genes associated with blood vessel development and angiogenesis. This study elucidates the heterogeneity of bone marrow-derived endothelial cells in the heart and their response to repetitive ischemia, laying the groundwork for targeting specific subpopulations for therapeutic angiogenesis in myocardial ischemia.

2.
Eur Heart J ; 44(24): 2244-2253, 2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37170610

RESUMO

BACKGROUND AND AIMS: Takotsubo syndrome (TTS) is a conundrum without consensus about the cause. In a murine model of coronary microvascular dysfunction (CMD), abnormalities in myocardial perfusion played a key role in the development of TTS. METHODS AND RESULTS: Vascular Kv1.5 channels connect coronary blood flow to myocardial metabolism and their deletion mimics the phenotype of CMD. To determine if TTS is related to CMD, wild-type (WT), Kv1.5-/-, and TgKv1.5-/- (Kv1.5-/- with smooth muscle-specific expression Kv1.5 channels) mice were studied following transaortic constriction (TAC). Measurements of left ventricular (LV) fractional shortening (FS) in base and apex, and myocardial blood flow (MBF) were completed with standard and contrast echocardiography. Ribonucleic Acid deep sequencing was performed on LV apex and base from WT and Kv1.5-/- (control and TAC). Changes in gene expression were confirmed by real-time-polymerase chain reaction. MBF was increased with chromonar or by smooth muscle expression of Kv1.5 channels in the TgKv1.5-/-. TAC-induced systolic apical ballooning in Kv1.5-/-, shown as negative FS (P < 0.05 vs. base), which was not observed in WT, Kv1.5-/- with chromonar, or TgKv1.5-/-. Following TAC in Kv1.5-/-, MBF was lower in LV apex than in base. Increasing MBF with either chromonar or in TgKv1.5-/- normalized perfusion and function between LV apex and base (P = NS). Some genetic changes during TTS were reversed by chromonar, suggesting these were independent of TAC and more related to TTS. CONCLUSION: Abnormalities in flow regulation between the LV apex and base cause TTS. When perfusion is normalized between the two regions, normal ventricular function is restored.


Assuntos
Cardiomiopatia de Takotsubo , Animais , Camundongos , Cromonar , Circulação Coronária/fisiologia , Ecocardiografia , Isquemia Miocárdica , Miocárdio
4.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175604

RESUMO

Accumulating evidence highlights protein O-GlcNAcylation as a putative pathogenic contributor of diabetic vascular complications. We previously reported that elevated protein O-GlcNAcylation correlates with increased atherosclerotic lesion formation and VSMC proliferation in response to hyperglycemia. However, the role of O-GlcNAc transferase (OGT), regulator of O-GlcNAc signaling, in the evolution of diabetic atherosclerosis remains elusive. The goal of this study was to determine whether smooth muscle OGT (smOGT) plays a direct role in hyperglycemia-induced atherosclerotic lesion formation and SMC de-differentiation. Using tamoxifen-inducible Myh11-CreERT2 and Ogtfl/fl mice, we generated smOGTWT and smOGTKO mice, with and without ApoE-null backgrounds. Following STZ-induced hyperglycemia, smOGTWT and smOGTKO mice were kept on a standard laboratory diet for the study duration. In a parallel study, smOGTWTApoE-/- and smOGTKOApoE-/- were initiated on Western diet at 8-wks-age. Animals harvested at 14-16-wks-age were used for plasma and tissue collection. Loss of smOGT augmented SM contractile marker expression in aortic vessels of STZ-induced hyperglycemic smOGTKO mice. Consistently, smOGT deletion attenuated atherosclerotic lesion lipid burden (Oil red O), plaque area (H&E), leukocyte (CD45) and smooth muscle cell (ACTA2) abundance in Western diet-fed hyperglycemic smOGTKOApoE-/- mice. This was accompanied by increased SM contractile markers and reduced inflammatory and proliferative marker expression. Further, smOGT deletion attenuated YY1 and SRF expression (transcriptional regulators of SM contractile genes) in hyperglycemic smOGTKOApoE-/- and smOGTKO mice. These data uncover an athero-protective outcome of smOGT loss-of-function and suggest a direct regulatory role of OGT-mediated O-GlcNAcylation in VSMC de-differentiation in hyperglycemia.


Assuntos
Aterosclerose , Hiperglicemia , Camundongos , Animais , Dieta Ocidental/efeitos adversos , Camundongos Knockout , Aterosclerose/genética , Aterosclerose/metabolismo , Miócitos de Músculo Liso/metabolismo , Hiperglicemia/metabolismo , Músculo Liso Vascular/metabolismo , Apolipoproteínas E/genética , Camundongos Endogâmicos C57BL
5.
J Mol Cell Cardiol ; 165: 158-171, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35074317

RESUMO

RATIONALE: Coronary collateral growth is a natural bypass for ischemic heart diseases. It offers tremendous therapeutic benefit, but the process of coronary collateral growth isincompletely understood due to limited preclinical murine models that would enable interrogation of its mechanisms and processes via genetic modification and lineage tracing. Understanding the processes by which coronary collaterals develop can unlock new therapeutic strategies for ischemic heart disease. OBJECTIVE: To develop a murine model of coronary collateral growth by repetitive ischemia and investigate whether capillary endothelial cells could contribute to the coronary collateral formation in an adult mouse heart after repetitive ischemia by lineage tracing. METHODS AND RESULTS: A murine model of coronary collateral growth was developed using short episodes of repetitive ischemia. Repetitive ischemia stimulation resulted in robust collateral growth in adult mouse hearts, validated by high-resolution micro-computed tomography. Repetitive ischemia-induced collateral formation compensated ischemia caused by occlusion of the left anterior descending artery. Cardiac function improved during ischemia after repetitive ischemia, suggesting the improvement of coronary blood flow. A capillary-specific Cre driver (Apln-CreER) was used for lineage tracing capillary endothelial cells. ROSA mT/mG reporter mice crossed with the Apln-CreER transgene mice underwent a 17 days' repetitive ischemia protocol for coronary collateral growth. Two-photon and confocal microscopy imaging of heart slices revealed repetitive ischemia-induced coronary collateral growth initiated from sprouting Apelin+ endothelial cells. Newly formed capillaries in the collateral-dependent zone expanded in diameter upon repetitive ischemia stimulation and arterialized with smooth muscle cell recruitment, forming mature coronary arteries. Notably, pre-existing coronary arteries and arterioles were not Apelin+, and all Apelin+ collaterals arose from sprouting capillaries. Cxcr4, Vegfr2, Jag1, Mcp1, and Hif1⍺ mRNA levels in the repetitive ischemia-induced hearts were also upregulated at the early stage of coronary collateral growth, suggesting angiogenic signaling pathways are activated for coronary collaterals formation during repetitive ischemia. CONCLUSIONS: We developed a murine model of coronary collateral growth induced by repetitive ischemia. Our lineage tracing study shows that sprouting endothelial cells contribute to coronary collateral growth in adult mouse hearts. For the first time, sprouting angiogenesis is shown to give rise to mature coronary arteries in response to repetitive ischemia in the adult mouse hearts.


Assuntos
Células Endoteliais , Isquemia Miocárdica , Animais , Apelina/metabolismo , Circulação Colateral/fisiologia , Vasos Coronários/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Isquemia/metabolismo , Camundongos , Isquemia Miocárdica/metabolismo , Neovascularização Fisiológica/fisiologia , Microtomografia por Raio-X
6.
Basic Res Cardiol ; 117(1): 3, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039940

RESUMO

Endothelial dysfunction in diabetes is generally attributed to oxidative stress, but this view is challenged by observations showing antioxidants do not eliminate diabetic vasculopathy. As an alternative to oxidative stress-induced dysfunction, we interrogated if impaired mitochondrial function in endothelial cells is central to endothelial dysfunction in the metabolic syndrome. We observed reduced coronary arteriolar vasodilation to the endothelium-dependent dilator, acetylcholine (Ach), in Zucker Obese Fatty rats (ZOF, 34 ± 15% [mean ± standard deviation] 10-3 M) compared to Zucker Lean rats (ZLN, 98 ± 11%). This reduction in dilation occurred concomitantly with mitochondrial DNA (mtDNA) strand lesions and reduced mitochondrial complex activities in the endothelium of ZOF versus ZLN. To demonstrate endothelial dysfunction is linked to impaired mitochondrial function, administration of a cell-permeable, mitochondria-directed endonuclease (mt-tat-EndoIII), to repair oxidatively modified DNA in ZOF, restored mitochondrial function and vasodilation to Ach (94 ± 13%). Conversely, administration of a cell-permeable, mitochondria-directed exonuclease (mt-tat-ExoIII) produced mtDNA strand breaks in ZLN, reduced mitochondrial complex activities and vasodilation to Ach in ZLN (42 ± 16%). To demonstrate that mitochondrial function is central to endothelium-dependent vasodilation, we introduced (via electroporation) liver mitochondria (from ZLN) into the endothelium of a mesenteric vessel from ZOF and restored endothelium-dependent dilation to vasoactive intestinal peptide (VIP at 10-5 M, 4 ± 3% vasodilation before mitochondrial transfer and 48 ± 36% after transfer). Finally, to demonstrate mitochondrial function is key to endothelium-dependent dilation, we administered oligomycin (mitochondrial ATP synthase inhibitor) and observed a reduction in endothelium-dependent dilation. We conclude that mitochondrial function is critical for endothelium-dependent vasodilation.


Assuntos
Síndrome Metabólica , Vasodilatação , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Animais , DNA Mitocondrial/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular , Síndrome Metabólica/metabolismo , Mitocôndrias/metabolismo , Ratos , Ratos Zucker
7.
Basic Res Cardiol ; 117(1): 2, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35024970

RESUMO

Coronary microvascular dysfunction is prevalent among people with diabetes and is correlated with cardiac mortality. Compromised endothelial-dependent dilation (EDD) is an early event in the progression of diabetes, but its mechanisms remain incompletely understood. Nitric oxide (NO) is the major endothelium-dependent vasodilatory metabolite in the healthy coronary circulation, but this switches to hydrogen peroxide (H2O2) in coronary artery disease (CAD) patients. Because diabetes is a significant risk factor for CAD, we hypothesized that a similar NO-to-H2O2 switch would occur in diabetes. Vasodilation was measured ex vivo in isolated coronary arteries from wild type (WT) and microRNA-21 (miR-21) null mice on a chow or high-fat/high-sugar diet, and B6.BKS(D)-Leprdb/J (db/db) mice using myography. Myocardial blood flow (MBF), blood pressure, and heart rate were measured in vivo using contrast echocardiography and a solid-state pressure sensor catheter. RNA from coronary arteries, endothelial cells, and cardiac tissues was analyzed via quantitative real-time PCR for gene expression, and cardiac protein expression was assessed via western blot analyses. Superoxide was detected via electron paramagnetic resonance. (1) Ex vivo coronary EDD and in vivo MBF were impaired in diabetic mice. (2) Nω-Nitro-L-arginine methyl ester, an NO synthase inhibitor (L-NAME), inhibited ex vivo coronary EDD and in vivo MBF in WT. In contrast, polyethylene glycol-catalase, an H2O2 scavenger (Peg-Cat), inhibited diabetic mouse EDD ex vivo and MBF in vivo. (3) miR-21 was upregulated in diabetic mouse endothelial cells, and the deficiency of miR-21 prevented the NO-to-H2O2 switch and ameliorated diabetic mouse vasodilation impairments. (4) Diabetic mice displayed increased serum NO and H2O2, upregulated mRNA expression of Sod1, Sod2, iNos, and Cav1, and downregulated Pgc-1α in coronary arteries, but the deficiency of miR-21 reversed these changes. (5) miR-21-deficient mice exhibited increased cardiac PGC-1α, PPARα and eNOS protein and reduced endothelial superoxide. (6) Inhibition of PGC-1α changed the mRNA expression of genes regulated by miR-21, and overexpression of PGC-1α decreased the expression of miR-21 in high (25.5 mM) glucose treated coronary endothelial cells. Diabetic mice exhibit a NO-to-H2O2 switch in the mediator of coronary EDD, which contributes to microvascular dysfunction and is mediated by miR-21. This study represents the first mouse model recapitulating the NO-to-H2O2 switch seen in CAD patients in diabetes.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus Experimental , MicroRNAs , Animais , Doença da Artéria Coronariana/metabolismo , Diabetes Mellitus Experimental/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , RNA Mensageiro/metabolismo , Superóxidos/metabolismo , Vasodilatação/fisiologia
8.
Arterioscler Thromb Vasc Biol ; 41(2): e112-e127, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33327743

RESUMO

OBJECTIVE: Hyperleptinemia, hallmark of obesity, is a putative pathophysiologic trigger for atherosclerosis. We previously reported a stimulatory effect of leptin on TSP-1 (thrombospondin-1) expression, a proatherogenic matricellular protein implicated in atherogenesis. However, a causal role of TSP-1 in leptin-driven atherosclerosis remains unknown. Approach and Results: Seventeen-weeks-old ApoE-/- and TSP-1-/-/ApoE-/- double knockout mice, on normocholesterolemic diet, were treated with or without murine recombinant leptin (5 µg/g bwt, IP) once daily for 3 weeks. Using aortic root morphometry and en face lesion assay, we found that TSP-1 deletion abrogated leptin-stimulated lipid-filled lesion burden, plaque area, and collagen accumulation in aortic roots of ApoE-/- mice, shown via Oil red O, hematoxylin and eosin, and Masson trichrome staining, respectively. Immunofluorescence microscopy of aortic roots showed that TSP-1 deficiency blocked leptin-induced inflammatory and smooth muscle cell abundance as well as cellular proliferation in ApoE-/- mice. Moreover, these effects were concomitant to changes in VLDL (very low-density lipoprotein)-triglyceride and HDL (high-density lipoprotein)-cholesterol levels. Immunoblotting further revealed reduced vimentin and pCREB (phospho-cyclic AMP response element-binding protein) accompanied with augmented smooth muscle-myosin heavy chain expression in aortic vessels of leptin-treated double knockout versus leptin-treated ApoE-/-; also confirmed in aortic smooth muscle cells from the mice genotypes, incubated ± leptin in vitro. Finally, TSP-1 deletion impeded plaque burden in leptin-treated ApoE-/- on western diet, independent of plasma lipid alterations. CONCLUSIONS: The present study provides evidence for a protective effect of TSP-1 deletion on leptin-stimulated atherogenesis. Our findings suggest a regulatory role of TSP-1 on leptin-induced vascular smooth muscle cell phenotypic transition and inflammatory lesion invasion. Collectively, these results underscore TSP-1 as a potential target of leptin-induced vasculopathy.


Assuntos
Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Trombospondina 1/deficiência , Animais , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/induzido quimicamente , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/induzido quimicamente , Aterosclerose/metabolismo , Aterosclerose/patologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Colágeno/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Leptina , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Placa Aterosclerótica , Transdução de Sinais , Trombospondina 1/genética
10.
Microcirculation ; 25(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29110409

RESUMO

Smooth muscle voltage-gated potassium (Kv) channels are important regulators of microvascular tone and tissue perfusion. Recent studies indicate that Kv1 channels represent a key component of the physiological coupling between coronary blood flow and myocardial oxygen demand. While the mechanisms by which metabolic changes in the heart are transduced to alter coronary Kv1 channel gating and promote vasodilation are unclear, a growing body of evidence underscores a pivotal role of Kv1 channels in sensing the cellular redox status. Here, we discuss current knowledge of mechanisms of Kv channel redox regulation with respect to pyridine nucleotide modulation of Kv1 function via ancillary Kvß proteins as well as direct modulation of channel activity via reactive oxygen and nitrogen species. We identify areas of additional research to address the integration of regulatory processes under altered physiological and pathophysiological conditions that may reveal insights into novel treatment strategies for conditions in which the matching of coronary blood supply and myocardial oxygen demand is compromised.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Nucleotídeos de Pirimidina/metabolismo , Animais , Vasos Coronários/química , Humanos , Microcirculação , Oxirredução , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Microcirculation ; 24(4)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28504408

RESUMO

The connection between metabolism and flow in the heart, metabolic dilation, is essential for cardiac function. We recently found redox-sensitive Kv1.5 channels play a role in coronary metabolic dilation; however, more than one ion channel likely plays a role in this process as animals null for these channels still showed limited coronary metabolic dilation. Accordingly, we examined the role of another Kv1 family channel, the energetically linked Kv1.3 channel, in coronary metabolic dilation. We measured myocardial blood flow (contrast echocardiography) during norepinephrine-induced increases in cardiac work (heart rate x mean arterial pressure) in WT, WT mice given correolide (preferential Kv1.3 antagonist), and Kv1.3-null mice (Kv1.3-/- ). We also measured relaxation of isolated small arteries mounted in a myograph. During increased cardiac work, myocardial blood flow was attenuated in Kv1.3-/- and in correolide-treated mice. In isolated vessels from Kv1.3-/- mice, relaxation to H2 O2 was impaired (vs WT), but responses to adenosine and acetylcholine were equivalent to WT. Correolide reduced dilation to adenosine and acetylcholine in WT and Kv1.3-/- , but had no effect on H2 O2 -dependent dilation in vessels from Kv1.3-/- mice. We conclude that Kv1.3 channels participate in the connection between myocardial blood flow and cardiac metabolism.


Assuntos
Circulação Coronária , Canal de Potássio Kv1.3/fisiologia , Miocárdio/metabolismo , Animais , Circulação Coronária/efeitos dos fármacos , Camundongos , Bloqueadores dos Canais de Potássio/farmacologia , Fluxo Sanguíneo Regional/efeitos dos fármacos , Triterpenos/farmacologia , Vasodilatação/efeitos dos fármacos
12.
Basic Res Cardiol ; 112(4): 41, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28540527

RESUMO

Ischemic heart disease is still the leading cause of death even with the advancement of pharmaceutical therapies and surgical procedures. Early vascularization in the ischemic heart is critical for a better outcome. Although stem cell therapy has great potential for cardiovascular regeneration, the ideal cell type and delivery method of cells have not been resolved. We tested a new approach of stem cell therapy by delivery of induced vascular progenitor cells (iVPCs) grown on polymer micro-bundle scaffolds in a rat model of myocardial infarction. iVPCs partially reprogrammed from vascular endothelial cells (ECs) had potent angiogenic potential and were able to simultaneously differentiate into vascular smooth muscle cells (SMCs) and ECs in 2D culture. Under hypoxic conditions, iVPCs also secreted angiogenic cytokines such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) as measured by enzyme-linked immunosorbent assay (ELISA). A longitudinal micro-scaffold made from poly(lactic-co-glycolic acid) was sufficient for the growth and delivery of iVPCs. Co-cultured ECs and SMCs aligned well on the micro-bundle scaffold similarly as in the vessels. 3D cell/polymer micro-bundles formed by iVPCs and micro-scaffolds were transplanted into the ischemic myocardium in a rat model of myocardial infarction (MI) with ligation of the left anterior descending artery. Our in vivo data showed that iVPCs on the micro-bundle scaffold had higher survival, and better retention and engraftment in the myocardium than free iVPCs. iVPCs on the micro-bundles promoted better cardiomyocyte survival than free iVPCs. Moreover, iVPCs and iVPC/polymer micro-bundles treatment improved cardiac function (ejection fraction and fractional shortening, endocardial systolic volume) measured by echocardiography, increased vessel density, and decreased infarction size [endocardial and epicardial infarct (scar) length] better than untreated controls at 8 weeks after MI. We conclude that iVPCs grown on a polymer micro-bundle scaffold are new promising approach for cell-based therapy designed for cardiovascular regeneration in ischemic heart disease.


Assuntos
Células Progenitoras Endoteliais/transplante , Ácido Láctico/química , Músculo Liso Vascular/transplante , Infarto do Miocárdio/cirurgia , Miocárdio/patologia , Miócitos de Músculo Liso/transplante , Neovascularização Fisiológica , Ácido Poliglicólico/química , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Células Progenitoras Endoteliais/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Músculo Liso Vascular/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miócitos de Músculo Liso/metabolismo , Comunicação Parácrina , Fenótipo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Remodelação Ventricular
13.
Circ Res ; 117(7): 612-621, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26224794

RESUMO

RATIONALE: In the working heart, coronary blood flow is linked to the production of metabolites, which modulate tone of smooth muscle in a redox-dependent manner. Voltage-gated potassium channels (Kv), which play a role in controlling membrane potential in vascular smooth muscle, have certain members that are redox-sensitive. OBJECTIVE: To determine the role of redox-sensitive Kv1.5 channels in coronary metabolic flow regulation. METHODS AND RESULTS: In mice (wild-type [WT], Kv1.5 null [Kv1.5(-/-)], and Kv1.5(-/-) and WT with inducible, smooth muscle-specific expression of Kv1.5 channels), we measured mean arterial pressure, myocardial blood flow, myocardial tissue oxygen tension, and ejection fraction before and after inducing cardiac stress with norepinephrine. Cardiac work was estimated as the product of mean arterial pressure and heart rate. Isolated arteries were studied to establish whether genetic alterations modified vascular reactivity. Despite higher levels of cardiac work in the Kv1.5(-/-) mice (versus WT mice at baseline and all doses of norepinephrine), myocardial blood flow was lower in Kv1.5(-/-) mice than in WT mice. At high levels of cardiac work, tissue oxygen tension dropped significantly along with ejection fraction. Expression of Kv1.5 channels in smooth muscle in the null background rescued this phenotype of impaired metabolic dilation. In isolated vessels from Kv1.5(-/-) mice, relaxation to H2O2 was impaired, but responses to adenosine and acetylcholine were normal compared with those from WT mice. CONCLUSIONS: Kv1.5 channels in vascular smooth muscle play a critical role in coupling myocardial blood flow to cardiac metabolism. Absence of these channels disassociates metabolism from flow, resulting in cardiac pump dysfunction and tissue hypoxia.


Assuntos
Circulação Coronária/fisiologia , Vasos Coronários/metabolismo , Canal de Potássio Kv1.5/fisiologia , Músculo Liso Vascular/metabolismo , Vasodilatação/fisiologia , Animais , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
14.
Basic Res Cardiol ; 111(3): 29, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27040114

RESUMO

Mitochondrial dysfunction in obesity and diabetes can be caused by excessive production of free radicals, which can damage mitochondrial DNA. Because mitochondrial DNA plays a key role in the production of ATP necessary for cardiac work, we hypothesized that mitochondrial dysfunction, induced by mitochondrial DNA damage, uncouples coronary blood flow from cardiac work. Myocardial blood flow (contrast echocardiography) was measured in Zucker lean (ZLN) and obese fatty (ZOF) rats during increased cardiac metabolism (product of heart rate and arterial pressure, i.v. norepinephrine). In ZLN increased metabolism augmented coronary blood flow, but in ZOF metabolic hyperemia was attenuated. Mitochondrial respiration was impaired and ROS production was greater in ZOF than ZLN. These were associated with mitochondrial DNA (mtDNA) damage in ZOF. To determine if coronary metabolic dilation, the hyperemic response induced by heightened cardiac metabolism, is linked to mitochondrial function we introduced recombinant proteins (intravenously or intraperitoneally) in ZLN and ZOF to fragment or repair mtDNA, respectively. Repair of mtDNA damage restored mitochondrial function and metabolic dilation, and reduced ROS production in ZOF; whereas induction of mtDNA damage in ZLN reduced mitochondrial function, increased ROS production, and attenuated metabolic dilation. Adequate metabolic dilation was also associated with the extracellular release of ADP, ATP, and H2O2 by cardiac myocytes; whereas myocytes from rats with impaired dilation released only H2O2. In conclusion, our results suggest that mitochondrial function plays a seminal role in connecting myocardial blood flow to metabolism, and integrity of mtDNA is central to this process.


Assuntos
Vasos Coronários/fisiopatologia , DNA Mitocondrial/metabolismo , Síndrome Metabólica/fisiopatologia , Mitocôndrias/metabolismo , Animais , Vasos Coronários/metabolismo , Dano ao DNA/fisiologia , Fragmentação do DNA , Modelos Animais de Doenças , Síndrome Metabólica/metabolismo , Estresse Oxidativo/fisiologia , Ratos , Ratos Zucker , Espécies Reativas de Oxigênio/metabolismo , Vasodilatação/fisiologia
16.
J Mol Cell Cardiol ; 88: 14-28, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26374996

RESUMO

During heightened cardiac work, O2 consumption by the heart benefits energy production via mitochondria. However, some electrons leak from the respiratory chain and yield superoxide, which is rapidly metabolized into H2O2 by SOD2. To understand the systemic effects of the metabolic dilator, H2O2, we studied mice with cardiac-specific SOD2 overexpression (SOD2-tg), which increases the H2O2 produced by cardiac mitochondria. Contrast echocardiography was employed to evaluate cardiac function, indicating that SOD2-tg had a significantly greater ejection fraction and a lower mean arterial pressure (MAP) that was partially normalized by intravenous injection of catalase. Norepinephrine-mediated myocardial blood flow (MBF) was significantly enhanced in SOD2-tg mice. Coupling of MBF to the double product (Heart Rate×MAP) was increased in SOD2-tg mice, indicating that the metabolic dilator, "spilled" over, inducing systemic vasodilation. The hypothesis that SOD2 overexpression effectively enhances mitochondrial function was further evaluated. Mitochondria of SOD2-tg mice had a decreased state 3 oxygen consumption rate, but maintained the same ATP production flux under the basal and L-NAME treatment conditions, indicating a higher bioenergetic efficiency. SOD2-tg mitochondria produced less superoxide, and had lower redox activity in converting cyclic hydroxylamine to stable nitroxide, and a lower GSSG concentration. EPR analysis of the isolated mitochondria showed a significant decrease in semiquinones at the SOD2-tg Qi site. These results support a more reductive physiological setting in the SOD2-tg murine heart. Cardiac mitochondria exhibited no significant differences in the respiratory control index between WT and SOD2-tg. We conclude that SOD2 overexpression in myocytes enhances mitochondrial function and metabolic vasodilation, leading to a phenotype of supernormal cardiac function.


Assuntos
Peróxido de Hidrogênio/metabolismo , Mitocôndrias Cardíacas/enzimologia , Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , Superóxido Dismutase/genética , Vasodilatação/efeitos dos fármacos , Trifosfato de Adenosina/biossíntese , Animais , Pressão Arterial/efeitos dos fármacos , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Catalase/farmacologia , Ecocardiografia , Feminino , Expressão Gênica , Peróxido de Hidrogênio/farmacologia , Injeções Intravenosas , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , NG-Nitroarginina Metil Éster/farmacologia , Oxirredução , Consumo de Oxigênio/efeitos dos fármacos , Transdução de Sinais , Volume Sistólico/efeitos dos fármacos , Superóxido Dismutase/metabolismo
17.
Basic Res Cardiol ; 110(2): 19, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25725808

RESUMO

Ischemic heart disease (IHD) is a leading cause of death worldwide, and regenerative therapies through exogenous stem cell delivery hold promising potential. One limitation of such therapies is the vulnerability of stem cells to the oxidative environment associated with IHD. Accordingly, manipulation of stem cell mitochondrial metabolism may be an effective strategy to improve survival of stem cells under oxidative stress. MitoNEET is a redox-sensitive, mitochondrial target of thiazolidinediones (TZDs), and influences cellular oxidative capacity. Pharmacological targeting of mitoNEET with the novel TZD, mitoNEET Ligand-1 (NL-1), improved cardiac stem cell (CSC) survival compared to vehicle (0.1% DMSO) during in vitro oxidative stress (H2O2). 10 µM NL-1 also reduced CSC maximal oxygen consumption rate (OCR) compared to vehicle. Following treatment with dexamethasone, CSC maximal OCR increased compared to baseline, but NL-1 prevented this effect. Smooth muscle α-actin expression increased significantly in CSC following differentiation compared to baseline, irrespective of NL-1 treatment. When CSCs were treated with glucose oxidase for 7 days, NL-1 significantly improved cell survival compared to vehicle (trypan blue exclusion). NL-1 treatment of cells isolated from mitoNEET knockout mice did not increase CSC survival with H2O2 treatment. Following intramyocardial injection of CSCs into Zucker obese fatty rats, NL-1 significantly improved CSC survival after 24 h, but not after 10 days. These data suggest that pharmacological targeting of mitoNEET with TZDs may acutely protect stem cells following transplantation into an oxidative environment. Continued treatment or manipulation of mitochondrial metabolism may be necessary to produce long-term benefits related to stem cell therapies.


Assuntos
Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Células-Tronco/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Citometria de Fluxo , Masculino , Camundongos , Camundongos Knockout , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/citologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Zucker , Reação em Cadeia da Polimerase em Tempo Real , Células-Tronco/citologia
18.
Circ Res ; 110(2): 241-52, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22095729

RESUMO

RATIONALE: A well-developed coronary collateral circulation improves the morbidity and mortality of patients following an acute coronary occlusion. Although regenerative medicine has great potential in stimulating vascular growth in the heart, to date there have been mixed results, and the ideal cell type for this therapy has not been resolved. OBJECTIVE: To generate induced vascular progenitor cells (iVPCs) from endothelial cells, which can differentiate into vascular smooth muscle cells (VSMCs) or endothelial cells (ECs), and test their capability to stimulate coronary collateral growth. METHODS AND RESULTS: We reprogrammed rat ECs with the transcription factors Oct4, Klf4, Sox2, and c-Myc. A population of reprogrammed cells was derived that expressed pluripotent markers Oct4, SSEA-1, Rex1, and AP and hemangioblast markers CD133, Flk1, and c-kit. These cells were designated iVPCs because they remained committed to vascular lineage and could differentiate into vascular ECs and VSMCs in vitro. The iVPCs demonstrated better in vitro angiogenic potential (tube network on 2-dimensional culture, tube formation in growth factor reduced Matrigel) than native ECs. The risk of teratoma formation in iVPCs is also reduced in comparison with fully reprogrammed induced pluripotent stem cells (iPSCs). When iVPCs were implanted into myocardium, they engrafted into blood vessels and increased coronary collateral flow (microspheres) and improved cardiac function (echocardiography) better than iPSCs, mesenchymal stem cells, native ECs, and sham treatments. CONCLUSIONS: We conclude that iVPCs, generated by partially reprogramming ECs, are an ideal cell type for cell-based therapy designed to stimulate coronary collateral growth.


Assuntos
Circulação Colateral , Circulação Coronária , Oclusão Coronária/cirurgia , Vasos Coronários/fisiopatologia , Células Endoteliais/transplante , Células-Tronco Pluripotentes Induzidas/transplante , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/transplante , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Oclusão Coronária/genética , Oclusão Coronária/metabolismo , Oclusão Coronária/patologia , Oclusão Coronária/fisiopatologia , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos SCID , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Neovascularização Fisiológica , Ratos , Ratos Sprague-Dawley , Medicina Regenerativa/métodos , Fluxo Sanguíneo Regional , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Teratoma/metabolismo , Teratoma/patologia , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transdução Genética
20.
Am J Physiol Heart Circ Physiol ; 305(9): H1275-80, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23997092

RESUMO

Coronary collateral growth is a process involving coordination between growth factors expressed in response to ischemia and mechanical forces. Underlying this response is proliferation of vascular smooth muscle and endothelial cells, resulting in an enlargement in the caliber of arterial-arterial anastomoses, i.e., a collateral vessel, sometimes as much as an order of magnitude. An integral element of this cell proliferation is the process known as phenotypic switching in which cells of a particular phenotype, e.g., contractile vascular smooth muscle, must change their phenotype to proliferate. Phenotypic switching requires that protein synthesis occurs and different kinase signaling pathways become activated, necessitating energy to make the switch. Moreover, kinases, using ATP to phosphorylate their targets, have an energy requirement themselves. Mitochondria play a key role in the energy production that enables phenotypic switching, but under conditions where mitochondrial energy production is constrained, e.g., mitochondrial oxidative stress, this switch is impaired. In addition, we discuss the potential importance of uncoupling proteins as modulators of mitochondrial reactive oxygen species production and bioenergetics, as well as the role of AMP kinase as an energy sensor upstream of mammalian target of rapamycin, the master regulator of protein synthesis.


Assuntos
Circulação Colateral , Circulação Coronária , Metabolismo Energético , Mitocôndrias Musculares/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neovascularização Fisiológica , Espécies Reativas de Oxigênio/metabolismo , Animais , Vasos Coronários/metabolismo , Humanos , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo , Fenótipo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA