Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nature ; 586(7827): 42-46, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32999482

RESUMO

Sensitive microwave detectors are essential in radioastronomy1, dark-matter axion searches2 and superconducting quantum information science3,4. The conventional strategy to obtain higher-sensitivity bolometry is the nanofabrication of ever smaller devices to augment the thermal response5-7. However, it is difficult to obtain efficient photon coupling and to maintain the material properties in a device with a large surface-to-volume ratio owing to surface contamination. Here we present an ultimately thin bolometric sensor based on monolayer graphene. To utilize the minute electronic specific heat and thermal conductivity of graphene, we develop a superconductor-graphene-superconductor Josephson junction8-13 bolometer embedded in a microwave resonator with a resonance frequency of 7.9 gigahertz and over 99 per cent coupling efficiency. The dependence of the Josephson switching current on the operating temperature, charge density, input power and frequency shows a noise-equivalent power of 7 × 10-19 watts per square-root hertz, which corresponds to an energy resolution of a single 32-gigahertz photon14, reaching the fundamental limit imposed by intrinsic thermal fluctuations at 0.19 kelvin. Our results establish that two-dimensional materials could enable the development of bolometers with the highest sensitivity allowed by the laws of thermodynamics.

2.
Nano Lett ; 21(23): 10122-10126, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34792368

RESUMO

Quantum computers can potentially achieve an exponential speedup versus classical computers on certain computational tasks, recently demonstrated in superconducting qubit processors. However, the capacitor electrodes that comprise these qubits must be large in order to avoid lossy dielectrics. This tactic hinders scaling by increasing parasitic coupling among circuit components, degrading individual qubit addressability, and limiting the spatial density of qubits. Here, we take advantage of the unique properties of van der Waals (vdW) materials to reduce the qubit area by >1000 times while preserving the capacitance while maintaining quantum coherence. Our qubits combine conventional aluminum-based Josephson junctions with parallel-plate capacitors composed of crystalline layers of superconducting niobium diselenide and insulating hexagonal boron nitride. We measure a vdW transmon T1 relaxation time of 1.06 µs, demonstrating a path to achieve high-qubit-density quantum processors with long coherence times, and the broad utility of layered heterostructures in low-loss, high-coherence quantum devices.

3.
Phys Rev Lett ; 109(24): 240504, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23368295

RESUMO

The control and handling of errors arising from cross talk and unwanted interactions in multiqubit systems is an important issue in quantum information processing architectures. We introduce a benchmarking protocol that provides information about the amount of addressability present in the system and implement it on coupled superconducting qubits. The protocol consists of randomized benchmarking experiments run both individually and simultaneously on pairs of qubits. A relevant figure of merit for the addressability is then related to the differences in the measured average gate fidelities in the two experiments. We present results from two similar samples with differing cross talk and unwanted qubit-qubit interactions. The results agree with predictions based on simple models of the classical cross talk and Stark shifts.

4.
Phys Rev Lett ; 109(8): 080505, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-23002731

RESUMO

We describe a scalable experimental protocol for estimating the average error of individual quantum computational gates. This protocol consists of interleaving random Clifford gates between the gate of interest and provides an estimate as well as theoretical bounds for the average error of the gate under test, so long as the average noise variation over all Clifford gates is small. This technique takes into account both state preparation and measurement errors and is scalable in the number of qubits. We apply this protocol to a superconducting qubit system and find a bounded average error of 0.003 [0,0.016] for the single-qubit gates X(π/2) and Y(π/2). These bounded values provide better estimates of the average error than those extracted via quantum process tomography.

5.
J Phys Condens Matter ; 34(10)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34847535

RESUMO

Ultra low-loss microwave materials are crucial for enhancing quantum coherence and scalability of superconducting qubits. Van der Waals (vdW) heterostructure is an attractive platform for quantum devices due to the single-crystal structure of the constituent two-dimensional (2D) layered materials and the lack of dangling bonds at their atomically sharp interfaces. However, new fabrication and characterization techniques are required to determine whether these structures can achieve low loss in the microwave regime. Here we report the fabrication of superconducting microwave resonators using NbSe2that achieve a quality factorQ> 105. This value sets an upper bound that corresponds to a resistance of⩽192µΩwhen considering the additional loss introduced by integrating NbSe2into a standard transmon circuit. This work demonstrates the compatibility of 2D layered materials with high-quality microwave quantum devices.

6.
Phys Rev E ; 104(4-2): 045307, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34781436

RESUMO

We demonstrate that matching the symmetry properties of a reservoir computer (RC) to the data being processed dramatically increases its processing power. We apply our method to the parity task, a challenging benchmark problem that highlights inversion and permutation symmetries, and to a chaotic system inference task that presents an inversion symmetry rule. For the parity task, our symmetry-aware RC obtains zero error using an exponentially reduced neural network and training data, greatly speeding up the time to result and outperforming artificial neural networks. When both symmetries are respected, we find that the network size N necessary to obtain zero error for 50 different RC instances scales linearly with the parity-order n. Moreover, some symmetry-aware RC instances perform a zero error classification with only N=1 for n≤7. Furthermore, we show that a symmetry-aware RC only needs a training data set with size on the order of (n+n/2) to obtain such a performance, an exponential reduction in comparison to a regular RC which requires a training data set with size on the order of n2^{n} to contain all 2^{n} possible n-bit-long sequences. For the inference task, we show that a symmetry-aware RC presents a normalized root-mean-square error three orders-of-magnitude smaller than regular RCs. For both tasks, our RC approach respects the symmetries by adjusting only the input and the output layers, and not by problem-based modifications to the neural network. We anticipate that the generalizations of our procedure can be applied in information processing for problems with known symmetries.

7.
Science ; 372(6540): 409-412, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33888641

RESUMO

Josephson junctions are superconducting devices used as high-sensitivity magnetometers and voltage amplifiers as well as the basis of high-performance cryogenic computers and superconducting quantum computers. Although device performance can be degraded by the generation of quasiparticles formed from broken Cooper pairs, this phenomenon also opens opportunities to sensitively detect electromagnetic radiation. We demonstrate single near-infrared photon detection by coupling photons to the localized surface plasmons of a graphene-based Josephson junction. Using the photon-induced switching statistics of the current-biased device, we reveal the critical role of quasiparticles generated by the absorbed photon in the detection mechanism. The photon sensitivity will enable a high-speed, low-power optical interconnect for future superconducting computing architectures.

8.
Phys Rev Lett ; 104(16): 163601, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20482047

RESUMO

The phenomenon of coherent population trapping (CPT) of an atom (or solid state "artificial atom"), and the associated effect of electromagnetically induced transparency (EIT), are clear demonstrations of quantum interference due to coherence in multilevel quantum systems. We report observation of CPT in a superconducting phase qubit by simultaneously driving two coherent transitions in a Lambda-type configuration, utilizing the three lowest lying levels of a local minimum of a phase qubit. We observe 60(+/-7)% suppression of the excited state population under conditions of CPT resonance. We present data and matching theoretical simulations showing the development of CPT in time. Finally, we used the observed time dependence of the excited state population to characterize quantum dephasing times of the system.

9.
Sci Rep ; 10(1): 248, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937815

RESUMO

One of the most challenging obstacles to realizing exascale computing is minimizing the energy consumption of L2 cache, main memory, and interconnects to that memory. For promising cryogenic computing schemes utilizing Josephson junction superconducting logic, this obstacle is exacerbated by the cryogenic system requirements that expose the technology's lack of high-density, high-speed and power-efficient memory. Here we demonstrate an array of cryogenic memory cells consisting of a non-volatile three-terminal magnetic tunnel junction element driven by the spin Hall effect, combined with a superconducting heater-cryotron bit-select element. The write energy of these memory elements is roughly 8 pJ with a bit-select element, designed to achieve a minimum overhead power consumption of about 30%. Individual magnetic memory cells measured at 4 K show reliable switching with write error rates below 10-6, and a 4 × 4 array can be fully addressed with bit select error rates of 10-6. This demonstration is a first step towards a full cryogenic memory architecture targeting energy and performance specifications appropriate for applications in superconducting high performance and quantum computing control systems, which require significant memory resources operating at 4 K.

10.
Rev Sci Instrum ; 88(10): 104703, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29092485

RESUMO

We describe the hardware, gateware, and software developed at Raytheon BBN Technologies for dynamic quantum information processing experiments on superconducting qubits. In dynamic experiments, real-time qubit state information is fed back or fed forward within a fraction of the qubits' coherence time to dynamically change the implemented sequence. The hardware presented here covers both control and readout of superconducting qubits. For readout, we created a custom signal processing gateware and software stack on commercial hardware to convert pulses in a heterodyne receiver into qubit state assignments with minimal latency, alongside data taking capability. For control, we developed custom hardware with gateware and software for pulse sequencing and steering information distribution that is capable of arbitrary control flow in a fraction of superconducting qubit coherence times. Both readout and control platforms make extensive use of field programmable gate arrays to enable tailored qubit control systems in a reconfigurable fabric suitable for iterative development.

11.
Science ; 351(6277): 1058-61, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26912362

RESUMO

Interactions between particles in quantum many-body systems can lead to collective behavior described by hydrodynamics. One such system is the electron-hole plasma in graphene near the charge-neutrality point, which can form a strongly coupled Dirac fluid. This charge-neutral plasma of quasi-relativistic fermions is expected to exhibit a substantial enhancement of the thermal conductivity, thanks to decoupling of charge and heat currents within hydrodynamics. Employing high-sensitivity Johnson noise thermometry, we report an order of magnitude increase in the thermal conductivity and the breakdown of the Wiedemann-Franz law in the thermally populated charge-neutral plasma in graphene. This result is a signature of the Dirac fluid and constitutes direct evidence of collective motion in a quantum electronic fluid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA