RESUMO
Environmental challenges early in development can result in complex phenotypic trade-offs and long-term effects on individual physiology, performance and behavior, with implications for disease and predation risk. We examined the effects of simulated pond drying and elevated water temperatures on development, growth, thermal physiology and behavior in a North American amphibian, Rana sphenocephala. Tadpoles were raised in outdoor mesocosms under warming and drying regimes based on projected climatic conditions in 2070. We predicted that amphibians experiencing the rapid pond drying and elevated pond temperatures associated with climate change would accelerate development, be smaller at metamorphosis and demonstrate long-term differences in physiology and exploratory behavior post-metamorphosis. Although both drying and warming accelerated development and reduced survival to metamorphosis, only drying resulted in smaller animals at metamorphosis. Around 1 month post-metamorphosis, animals from the control treatment jumped relatively farther at high temperatures in jumping trials. In addition, across all treatments, frogs with shorter larval periods had lower critical thermal minima and maxima. We also found that developing under warming and drying resulted in a less exploratory behavioral phenotype, and that drying resulted in higher selected temperatures in a thermal gradient. Furthermore, behavior predicted thermal preference, with less exploratory animals selecting higher temperatures. Our results underscore the multi-faceted effects of early developmental environments on behavioral and physiological phenotypes later in life. Thermal preference can influence disease risk through behavioral thermoregulation, and exploratory behavior may increase risk of predation or pathogen encounter. Thus, climatic stressors during development may mediate amphibian exposure and susceptibility to predators and pathogens into later life stages.
Assuntos
Anuros , Metamorfose Biológica , Animais , Metamorfose Biológica/fisiologia , Larva/fisiologia , Ranidae/fisiologia , LagoasRESUMO
Environmental DNA (eDNA) detection is a valuable conservation tool that can be used to identify and monitor imperiled or invasive species and wildlife pathogens. Batrachochytrium pathogens are of global conservation concern because they are a leading cause of amphibian decline. While eDNA techniques have been used to detect Batrachochytrium DNA in the environment, a systematic comparison of extraction methods across environmental samples is lacking. In this study, we first compared eDNA extraction methods and found that a soil extraction kit (Qiagen PowerSoil) was the most effective for detecting Batrachochytrium dendrobatidis in water samples. The PowerSoil extraction had a minimum detection level of 100 zoospores and had a two- to four-fold higher detection probability than other commonly used extraction methods (e.g., QIAamp extraction, DNeasy+Qiashredder extraction method, respectively). Next, we used this extraction method on field-collected water and sediment samples and were able to detect pathogen DNA in both. While field-collected water filters were equivalent to amphibian skin swab samples in detecting the presence of pathogen DNA, the seasonal patterns in pathogen quantity were different between skin swabs and water samples. Detection rate was lowest in sediment samples. We also found that detection probability increases with the volume of water filtered. Our results indicate that water filter eDNA samples can be accurate in detecting pathogen presence at the habitat scale but their utility for quantifying pathogen loads in the environment appears limited. We suggest that eDNA techniques be used for early warning detection to guide animal sampling efforts.
Assuntos
Quitridiomicetos , DNA Ambiental , Anfíbios , Animais , Quitridiomicetos/genética , DNA , EcossistemaRESUMO
Amphibian skin is highly variable in structure and function across anurans, and plays an important role in physiological homeostasis and immune defence. For example, skin sloughing has been shown to reduce pathogen loads on the skin, such as the lethal fungus Batrachochytrium dendrobatidis ( Bd), but interspecific variation in sloughing frequency is largely unknown. Using phylogenetic linear mixed models, we assessed the relationship between skin turnover rate, skin morphology, ecological traits and overall evidence of Bd-driven declines. We examined skin sloughing rates in 21 frog species from three continents, as well as structural skin characteristics measured from preserved specimens. We found that sloughing rate varies significantly with phylogenetic group, but was not associated with evidence of Bd-driven declines, or other skin characteristics examined. This is the first comparison of sloughing rate across a wide range of amphibian species, and creates the first database of amphibian sloughing behaviour. Given the strong phylogenetic signal observed in sloughing rate, approximate sloughing rates of related species may be predicted based on phylogenetic position. While not related to available evidence of declines, understanding variation in sloughing rate may help explain differences in the severity of infection in genera with relatively slow skin turnover rates (e.g. Atelopus).
Assuntos
Anuros , Quitridiomicetos/fisiologia , Dermatomicoses/veterinária , Pele/microbiologia , Animais , Anuros/fisiologia , Dermatomicoses/fisiopatologia , FilogeniaRESUMO
Chytridiomycosis, a lethal fungal skin disease of amphibians, fatally disrupts ionic and osmotic homeostasis. Infected amphibians increase their skin shedding rate (sloughing) to slow pathogen growth, but the sloughing process also increases skin permeability. Healthy amphibians increase active ion uptake during sloughing by increasing ion transporter abundance to offset the increased skin permeability. How chytridiomycosis affects the skin function during and between sloughing events remains unknown. Here, we show that non-sloughing frogs with chytridiomycosis have impaired cutaneous sodium uptake, in part because they have fewer sodium transporters in their skin. Interestingly, sloughing was associated with a transient increase in sodium transporter activity and abundance, suggesting that the newly exposed skin layer is initially fully functional until the recolonization of the skin by the fungus again impedes cutaneous function. However, the temporary restoration of skin function during sloughing does not restore ionic homeostasis, and the underlying loss of ion uptake capacity is ultimately detrimental for amphibians with chytridiomycosis.
Assuntos
Anuros , Quitridiomicetos/fisiologia , Dermatomicoses/veterinária , Proteínas de Anfíbios/metabolismo , Animais , Dermatomicoses/metabolismo , Dermatomicoses/microbiologia , Transporte de Íons/fisiologia , Íons , QueenslandRESUMO
Batrachochytrium dendrobatidis (Bd) is a pathogenic fungus that causes the cutaneous, infectious disease chytridiomycosis and has been implicated in population declines of numerous anuran species worldwide. Proximate cause of death by chytridiomycosis is asystolic cardiac arrest as a consequence of severe disruption to electrolyte balance. Animals heavily infected with Bd also experience a disruption to their skin sloughing regime, indicating that core functions of the skin, such as water retention, may be severely impacted. This study examined how skin sloughing, body size and Bd infection interact to influence water loss rates in five Australian frog species: Litoria caerulea, Limnodynastes peronii, Lechriodus fletcheri, Limnodynastes tasmaniensis and Platyplectrum ornatum Rates of water loss more than doubled during sloughing in L.caerulea During active periods across all species, water loss rates were on average 232% higher in Bd infected frogs than in uninfected frogs. This indicates that dehydration stress may be a significant factor contributing to the morbidity of severely Bd infected anurans, a symptom that is then exacerbated by an increased rate of sloughing. When taking size into account, smaller and/or juvenile anurans may be more at risk from dehydration due to Bd infection, as they lose a greater amount of water and slough more frequently than adults. This may in part explain the higher mortality rates typical for small and juvenile frogs infected with Bd Understanding how Bd affects the core functions of the skin, including rates of water loss, can improve our predictions of disease outcome in amphibians.
Assuntos
Anuros , Tamanho Corporal , Quitridiomicetos/fisiologia , Micoses/veterinária , Dermatopatias/veterinária , Perda Insensível de Água , Animais , Micoses/microbiologia , Micoses/fisiopatologia , Dermatopatias/microbiologia , Dermatopatias/fisiopatologia , Equilíbrio HidroeletrolíticoRESUMO
Intraspecific variation can be as great as variation across species, but the role of intraspecific variation in driving local and large-scale patterns is often overlooked, particularly in the field of thermal biology. In amphibians, which depend on environmental conditions and behavior to regulate body temperature, recognizing intraspecific thermal trait variation is essential to comprehensively understanding how global change impacts populations. Here, we examine the drivers of micro- and macrogeographical intraspecific thermal trait variation in amphibians. At the local scale, intraspecific variation can arise via changes in ontogeny, body size, and between the sexes, and developmental plasticity, acclimation, and maternal effects may modulate predictions of amphibian performance under future climate scenarios. At the macrogeographic scale, local adaptation in thermal traits may occur along latitudinal and elevational gradients, with seasonality and range-edge dynamics likely playing important roles in patterns that may impact future persistence. We also discuss the importance of considering disease as a factor affecting intraspecific variation in thermal traits and population resilience to climate change, given the impact of pathogens on thermal preferences and critical thermal limits of hosts. Finally, we make recommendations for future work in this area. Ultimately, our goal is to demonstrate why it is important for researchers to consider intraspecific variation to determine the resilience of amphibians to global change.
Assuntos
Anfíbios , Mudança Climática , Animais , Anfíbios/fisiologia , Aclimatação/fisiologia , TemperaturaRESUMO
Most hosts contain few parasites, whereas few hosts contain many. This pattern, known as aggregation, is well-documented in macroparasites where parasite intensity distribution among hosts affects host-parasite dynamics. Infection intensity also drives fungal disease dynamics, but we lack a basic understanding of host-fungal aggregation patterns, how they compare to macroparasites, and if they reflect biological processes. To address these gaps, we characterized aggregation of the fungal pathogen Batrachochytrium dendrobatidis (Bd) in amphibian hosts. Utilizing the slope of Taylor's Power Law, we found Bd intensity distributions were more aggregated than macroparasites, conforming closely to lognormal distributions. We observed that Bd aggregation patterns are strongly correlated with known biological processes operating in amphibian populations, such as epizoological phase-invasion, post-invasion, and enzootic-and intensity-dependent disease mortality. Using intensity-dependent mathematical models, we found evidence of evolution of host resistance based on aggregation shifts in systems persisting with Bd following disease-induced declines. Our results show that Bd aggregation is highly conserved across disparate systems and is distinct from aggregation patterns in macroparasites, and contains signatures of potential biological processes of amphibian-Bd systems. Our work lays a foundation to unite host-fungal dynamics under a common theoretical framework and inform future modeling approaches that may elucidate host-fungus interactions.
RESUMO
Antimicrobial peptides (AMPs) play a fundamental role in the innate defense against microbial pathogens, as well as other immune and non-immune functions. Their role in amphibian skin defense against the pathogenic fungus Batrachochytrium dendrobatidis (Bd) is exemplified by experiments in which depletion of host's stored AMPs increases mortality from infection. Yet, the question remains whether there are generalizable patterns of negative or positive correlations between stored AMP defenses and the probability of infection or infection intensity across populations and species. This study aims to expand on prior field studies of AMP quantities and compositions by correlating stored defenses with an estimated risk of Bd exposure (prevalence and mean infection intensity in each survey) in five locations across the United States and a total of three species. In all locations, known AMPs correlated with the ability of recovered secretions to inhibit Bd in vitro. We found that stored AMP defenses were generally unrelated to Bd infection except in one location where the relative intensity of known AMPs was lower in secretions from infected frogs. In all other locations, known AMP relative intensities were higher in infected frogs. Stored peptide quantity was either positively or negatively correlated with Bd exposure risk. Thus, future experiments coupled with organismal modeling can elucidate whether Bd infection affects secretion/synthesis and will provide insight into how to interpret amphibian ecoimmunology studies of AMPs. We also demonstrate that future AMP isolating and sequencing studies can focus efforts by correlating mass spectrometry peaks to inhibitory capacity using linear decomposition modeling.
Assuntos
Peptídeos Antimicrobianos , Batrachochytrium , Micoses , Animais , Batrachochytrium/fisiologia , Micoses/veterinária , Micoses/imunologia , Micoses/microbiologia , Rana pipiens/microbiologia , Rana pipiens/fisiologia , Rana pipiens/imunologia , Estados Unidos , Quitridiomicetos/fisiologiaRESUMO
Levels of ultraviolet (UV) radiation have increased in many parts of the world due to the anthropogenic destruction of the ozone layer. UV radiation is a potent immunosuppressant and can increase the susceptibility of animal hosts to pathogens. UV radiation can directly alter immune function via immunosuppression and photoimmunotolerance; however, UV may also influence pathogen defences by affecting the distribution of energy resources among competing physiological processes. Both defence against UV damage and repair of incurred damage, as well as the maintenance of immune defences and responding to an immune challenge, are energetically expensive. These competing demands for finite energy resources could trade off against one another, resulting in sub-optimal performance in one or both processes. We examined the potential for a disease-related energy trade-off in green tree frog (Litoria caerulea) larvae. Larvae were reared under high- or low-UV conditions for 12 weeks during which time we measured growth rates, metabolic rate and susceptibility to the amphibian fungal pathogen, Batrachochytrium dendrobatidis (Bd). We found that larvae exposed to high levels of UV radiation had higher rates of energy expenditure than those exposed to low UV levels; however, UV exposure did not affect growth rates or developmental timings. Larvae exposed to high UV radiation also experienced greater Bd infection rates and carried a higher infection burden than those not exposed to elevated UV radiation. We propose that the increased energetic costs of responding to UV radiation were traded off against immune defences to protect larval growth rates. These findings have important implications for the aetiology of some Bd-associated amphibian declines, particularly in montane environments where Bd infections are most severe and where UV levels are highest.
RESUMO
Host species that can independently maintain a pathogen in a host community and contribute to infection in other species are important targets for disease management. However, the potential of host species to maintain a pathogen is not fixed over time, and an important challenge is understanding how within- and across-season variability in host maintenance potential affects pathogen persistence over longer time scales relevant for disease management (e.g., years). Here, we sought to understand the causes and consequences of seasonal infection dynamics in leopard frogs (Rana sphenocephala and Rana pipiens) infected with the fungal pathogen Batrachochytrium dendrobatidis (Bd). We addressed three questions broadly applicable to seasonal host-parasite systems. First, to what degree are observed seasonal patterns in infection driven by temperature-dependent infection processes compared to seasonal host demographic processes? Second, how does seasonal variation in maintenance potential affect long-term pathogen persistence in multi-host communities? Third, does high deterministic maintenance potential relate to the long-term stochastic persistence of pathogens in host populations with seasonal infection dynamics? To answer these questions, we used field data collected over 3 years on >1400 amphibians across four geographic locations, laboratory and mesocosm experiments, and a novel mathematical model. We found that the mechanisms that drive seasonal prevalence were different from those driving seasonal infection intensity. Seasonal variation in Bd prevalence was driven primarily by changes in host contact rates associated with breeding migrations to and from aquatic habitat. In contrast, seasonal changes in infection intensity were driven by temperature-induced changes in Bd growth rate. Using our model, we found that the maintenance potential of leopard frogs varied significantly throughout the year and that seasonal troughs in infection prevalence made it unlikely that leopard frogs were responsible for long-term Bd persistence in these seasonal amphibian communities, highlighting the importance of alternative pathogen reservoirs for Bd persistence. Our results have broad implications for management in seasonal host-pathogen systems, showing that seasonal changes in host and pathogen vital rates, rather than the depletion of susceptible hosts, can lead to troughs in pathogen prevalence and stochastic pathogen extirpation.
Assuntos
Quitridiomicetos , Micoses , Anfíbios , Animais , Ecossistema , Micoses/epidemiologia , Micoses/veterinária , Melhoramento Vegetal , RanidaeRESUMO
Ecoimmunology is a rapidly developing field that explores how the environment shapes immune function, which in turn influences host-parasite relationships and disease outcomes. Host immune defence is a key fitness determinant because it underlies the capacity of animals to resist or tolerate potential infections. Importantly, immune function can be suppressed, depressed, reconfigured or stimulated by exposure to rapidly changing environmental drivers like temperature, pollutants and food availability. Thus, hosts may experience trade-offs resulting from altered investment in immune function under environmental stressors. As such, approaches in ecoimmunology can provide powerful tools to assist in the conservation of wildlife. Here, we provide case studies that explore the diverse ways that ecoimmunology can inform and advance conservation efforts, from understanding how Galapagos finches will fare with introduced parasites, to using methods from human oncology to design vaccines against a transmissible cancer in Tasmanian devils. In addition, we discuss the future of ecoimmunology and present 10 questions that can help guide this emerging field to better inform conservation decisions and biodiversity protection. From better linking changes in immune function to disease outcomes under different environmental conditions, to understanding how individual variation contributes to disease dynamics in wild populations, there is immense potential for ecoimmunology to inform the conservation of imperilled hosts in the face of new and re-emerging pathogens, in addition to improving the detection and management of emerging potential zoonoses.
RESUMO
Drought can heavily impact aquatic ecosystems. For amphibian species that rely on water availability for larval development, drought can have direct and indirect effects on larval survival and postmetamorphic fitness. Some amphibian species can accelerate the timing of metamorphosis to escape drying habitats through developmental plasticity. However, trade-offs associated with premature metamorphosis, such as reduced body size and altered immune function in the recently metamorphosed individual, may have downstream effects on susceptibility to disease. Here, we review the physiological mechanisms driving patterns in larval amphibian development under low water conditions. Specifically, we discuss drought-induced accelerated metamorphosis and how it may alter immune function, predisposing juvenile amphibians to infectious disease. In addition, we consider how these physiological and immunological adjustments could play out in a lethal disease system, amphibian chytridiomycosis. Last, we propose avenues for future research that adopt an ecoimmunological approach to evaluate the combined threats of drought and disease for amphibian populations.
Assuntos
Anfíbios/imunologia , Secas , Micoses/veterinária , Lagoas , Anfíbios/microbiologia , Animais , Quitridiomicetos , Micoses/imunologia , Micoses/microbiologiaRESUMO
The fungal pathogen Batrachochytrium dendrobatidis (Bd) has been implicated in amphibian population declines globally. Given that Bd infection is limited to the skin in post-metamorphic amphibians, routine skin sloughing may regulate infection. Skin sloughing has been shown to reduce the number of cultivatable microbes on amphibian skin, and Bd infection increases skin sloughing rates at high loads. However, it is unclear whether species specific differences in skin sloughing patterns could regulate Bd population growth on the skin, and influence subsequent infection dynamics. We exposed five Australian frog species to Bd, and monitored sloughing rates and infection loads over time. Sloughing reduced Bd load on the ventral skin surface, in all five species, despite wide variation in susceptibility to disease. In the least susceptible species, an increase in sloughing rate occurred at lower infection loads, and sloughing reduced Bd load up to 100%, leading to infection clearance. Conversely, the drop in Bd load with sloughing was only temporary in the more susceptible species. These findings indicate that the ability of sloughing to act as an effective immune defence is species specific, and they have implications for understanding the pattern of Bd population growth on individual hosts, as well as population-level effects.
Assuntos
Anuros/imunologia , Quitridiomicetos/crescimento & desenvolvimento , Dermatomicoses/veterinária , Muda , Pele/imunologia , Pele/microbiologia , Animais , Contagem de Colônia Microbiana , Dermatomicoses/microbiologiaRESUMO
Many animals use sounds produced by conspecifics for mate identification. Female insects and anuran amphibians, for instance, use acoustic cues to localize, orient toward and approach conspecific males prior to mating. Here we present a novel technique that utilizes multiple, distributed sound-indication devices and a miniature LED backpack to visualize and record the nocturnal phonotactic approach of females of the Australian orange-eyed tree frog (Litoria chloris) both in a laboratory arena and in the animal's natural habitat. Continuous high-definition digital recording of the LED coordinates provides automatic tracking of the female's position, and the illumination patterns of the sound-indication devices allow us to discriminate multiple sound sources including loudspeakers broadcasting calls as well as calls emitted by individual male frogs. This innovative methodology is widely applicable for the study of phonotaxis and spatial structures of acoustically communicating nocturnal animals.