Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Bioorg Med Chem Lett ; 102: 129677, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38408510

RESUMO

Stimulator of interferon genes (STING), a homodimeric membrane receptor localized in the endoplasmic reticulum, plays a pivotal role in signaling innate immune responses. Inhibitors and proteolysis-targeting chimeras (PROTACs) targeting STING are promising compounds for addressing autoinflammatory and autoimmune disorders. In this study, we used a minimal covalent handle recently developed as the ligand portion of an E3 ligase. The engineered STING degrader with a low molecular weight compound covalently binds to STING and E3 ligase. Degrader 2 showed sustained STING degradation activity at lower concentrations (3 µM, 48 h, about 75 % degradation) compared to a reported STING PROTAC, SP23. This discovery holds significance for its potential in treating autoinflammatory and autoimmune diseases, offering promising avenues for developing more efficacious STING-targeted therapies.


Assuntos
Transdução de Sinais , Ubiquitina-Proteína Ligases , Proteólise , Ligantes , Ubiquitina-Proteína Ligases/metabolismo
2.
Bioorg Med Chem Lett ; 107: 129778, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38702019

RESUMO

PROTACs (Proteolysis targeting chimeras) are chimeric molecules designed to induce targeted protein degradation via the ubiquitin-proteasome system. These molecules catalytically degrade target proteins and sustainably inhibit their function. Therefore, PROTAC's unique mechanism of action is not only beneficial in medicine but also serves as a valuable tool for molecular biological analysis in fields like chemical biology, biochemistry, and drug discovery. This study presents a novel turn-off (ON-OFF) type PROTAC development strategy utilizing a photocleavable linker. The inclusion of this linker enables temporal control of the degradation activity targeting BRD4 protein upon UV light exposure. PROTAC-2 demonstrated the most potent degradation activity against BRD4 among the other synthesized PROTACs with varying linker lengths. The UV light-induced cleavage of PROTAC-2 was confirmed, leading to a reduction in its BRD4 degradation activity. Notably, this study introduces a novel linker capable of nullifying degradation activity of PROTACs which is activated by light irradiation. These findings offer a promising strategy for the development of turn-off type PROTACs, providing enhanced temporal control over protein degradation. The approach holds significant potential for applications in molecular function studies and drug discovery.


Assuntos
Proteínas de Ciclo Celular , Proteólise , Fatores de Transcrição , Raios Ultravioleta , Proteólise/efeitos dos fármacos , Proteólise/efeitos da radiação , Humanos , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/metabolismo , Estrutura Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Processos Fotoquímicos , Quimera de Direcionamento de Proteólise , Proteínas que Contêm Bromodomínio
3.
Bioorg Chem ; 145: 107204, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377822

RESUMO

Proteolysis targeting chimeras (PROTACs) induce the ubiquitination and subsequent proteasomal degradation of targeted proteins. Numerous PROTACs have emerged as promising drug candidates for various disease-related proteins. This study investigates PROTACs targeted to degrade anaplastic lymphoma kinase (ALK) fusion proteins, which are implicated in diseases such as anaplastic large cell lymphoma and non-small cell lung cancer. We recently reported the development of a gilteritinib-warheaded PROTAC to target and degrade the Fms-like tyrosine kinase 3 (FLT3) protein. Gilteritinib is a tyrosine kinase inhibitor that targets FLT3, and recent studies have revealed that it also functions as an ALK inhibitor. We conducted a structure-activity relationship (SAR) study and expanded the range of target proteins for gilteritinib-warheaded PROTACs to include echinoderm microtubule-associated protein-like 4 (EML4)-ALK and nucleophosmin (NPM)-ALK, in addition to FLT3. Our SAR study utilized three types of ligands for E3 ligase- inhibitor of apoptosis protein (IAP), cereblon (CRBN), and von Hippel-Lindau (VHL)- in the PROTAC designs and we observed varied efficacy in the degradation of target proteins. The CRBN-based PROTAC effectively reduced the protein expression of FLT3, EML4-ALK, and NPM-ALK. The IAP-based PROTAC reduced expression of both FLT3 and EML4-ALK proteins but not that of NPM-ALK, while the VHL-based PROTAC was ineffective against all target proteins. Several ALK-targeted PROTACs have already been developed using CRBN or VHL as E3 ligase, but this is the first report of an IAP-based ALK degrader. The length of the linker structure utilized in PROTAC also had a significant effect on their efficacy and activity. PROTACs formed with shorter linkers demonstrated an enhanced degradation activity to target proteins compared with those formed with longer linkers. These findings provide valuable insight for the development of effective PROTACs to target and degrade ALK fusion proteins.


Assuntos
Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Pirazinas , Humanos , Quinase do Linfoma Anaplásico , Quimera de Direcionamento de Proteólise , Proteólise , Neoplasias Pulmonares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ligantes
4.
Chem Pharm Bull (Tokyo) ; 72(2): 149-154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38296556

RESUMO

Antimicrobial peptides (AMPs) are promising therapeutic agents against bacteria. We have previously reported an amphipathic AMP Stripe composed of cationic L-Lys and hydrophobic L-Leu/L-Ala residues, and Stripe exhibited potent antimicrobial activity against Gram-positive and Gram-negative bacteria. Gramicidin A (GA), composed of repeating sequences of L- and D-amino acids, has a unique ß6.3-helix structure and exhibits broad antimicrobial activity. Inspired by the structural properties and antimicrobial activities of LD-alternating peptides such as GA, in this study, we designed Stripe derivatives with LD-alternating sequences. We found that simply alternating L- and D-amino acids in the Stripe sequence to give StripeLD caused a reduction in antimicrobial activity. In contrast, AltStripeLD, with cationic and hydrophobic amino acids rearranged to yield an amphipathic distribution when the peptide adopts a ß6.3-helix, displayed higher antimicrobial activity than AltStripe. These results suggest that alternating L-/D-cationic and L-/D-hydrophobic amino acids in accordance with the helical structure of an AMP may be a useful way to improve antimicrobial activity and develop new AMP drugs.


Assuntos
Aminoácidos , Antibacterianos , Aminoácidos/farmacologia , Antibacterianos/química , Peptídeos Antimicrobianos , Bactérias Gram-Negativas , Relação Estrutura-Atividade , Bactérias Gram-Positivas , Estrutura Secundária de Proteína , Gramicidina/química , Peptídeos/farmacologia , Testes de Sensibilidade Microbiana
5.
Bioconjug Chem ; 34(10): 1780-1788, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37736001

RESUMO

Proteolysis-targeting chimeras (PROTACs) have attracted attention as a chemical method of protein knockdown via the ubiquitin-proteasome system. Some oligonucleotide-based PROTACs have recently been developed for disease-related proteins that do not have optimal small-molecule ligands such as transcription factors. We have previously developed the PROTAC LCL-ER(dec), which uses a decoy oligonucleotide as a target ligand for estrogen receptor α (ERα) as a model transcription factor. However, LCL-ER(dec) has a low intracellular stability because it comprises natural double-stranded DNA sequences. In the present study, we developed PROTACs containing chemically modified decoys to address this issue. Specifically, we introduced phosphorothioate modifications and hairpin structures into LCL-ER(dec). Among the newly designed PROTACs, LCL-ER(dec)-H46, with a T4 loop structure at the end of the decoy, showed long-term ERα degradation activity while acquiring enzyme tolerance. These findings suggest that the introduction of hairpin structures is a useful modification of oligonucleotides in decoy oligonucleotide-based PROTACs.


Assuntos
Receptor alfa de Estrogênio , Quimera de Direcionamento de Proteólise , Receptores de Estrogênio , Receptor alfa de Estrogênio/metabolismo , Oligonucleotídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Receptores de Estrogênio/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases , Humanos
6.
Bioorg Med Chem ; 86: 117293, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37126968

RESUMO

Developing highly active proteolysis-targeting chimeras (PROTACs) requires investigating a variety of ubiquitin ligase (E3 ligase) ligands and linker structures as well as their lengths. In this study, we developed a solid-phase synthesis method that affords PROTAC design diversity. We expanded the E3 ligand range to include Von Hippel-Lindau (VHL) and inhibitor of apoptosis protein (IAP) ligands because only the cereblon (CRBN) ligand thalidomide and its derivatives have been investigated for solid-phase synthesis of PROTACs. Moreover, we examined the suitability of a polyethylene glycol (PEG) rather than an alkyl linker used in our previous study for synthesizing PROTACs. Facile and rapid solid-phase synthesis methods using the above E3 ligands for developing PROTACs targeting bromodomain-containing protein 4 (BRD4) were accomplished. Western blotting analysis revealed that minor differences in the E3 ligand and linker type significantly affected the activity of the synthesized PROTACs. Our solid-phase PROTAC synthesis methods enable rapid synthesis of multiple PROTACs with various combinations of ligands for the protein-of-interest and E3 ligands and linkers that connect these ligands.


Assuntos
Proteínas Nucleares , Quimera de Direcionamento de Proteólise , Fatores de Transcrição , Ligantes , Proteínas Nucleares/metabolismo , Proteólise , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Quimera de Direcionamento de Proteólise/química
7.
Cancer Sci ; 113(8): 2828-2838, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35579105

RESUMO

BRAF mutations are frequently observed in melanoma and hairy-cell leukemia. Currently approved rapidly accelerated fibrosarcoma (RAF) kinase inhibitors targeting oncogenic BRAF V600 mutations have shown remarkable efficacy in the clinic, but their therapeutic benefits are occasionally hampered by acquired resistance due to RAF dimerization-dependent reactivation of the downstream MAPK pathway, which is known as paradoxical activation. There is also a concern that paradoxical activation of the MAPK pathway may trigger secondary cancer progression. In this study, we developed chimeric compounds, proteolysis targeting chimeras (PROTACs), that target BRAFV600E protein for degradation. CRBN(BRAF)-24, the most effective chimera, potently degraded BRAFV600E in a ubiquitin-proteasome system (UPS)-dependent manner and inhibited the proliferation of BRAFV600E -driven cancer cells. In BRAF wild-type cells, CRBN(BRAF)-24 induced neither BRAFWT degradation nor paradoxical activation of the MAPK pathway. Biochemical analysis revealed that CRBN(BRAF)-24 showed more potent and sustained suppression of MAPK signaling than a BRAFV600E inhibitor, PLX-8394, in BRAFV600E -driven cancer cells. Targeted degradation of BRAFV600E by CRBN(BRAF)-24 could be a promising strategy to evade paradoxical activation of the RAF-MAPK pathway.


Assuntos
Melanoma , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Linhagem Celular Tumoral , Humanos , Sistema de Sinalização das MAP Quinases , Melanoma/tratamento farmacológico , Melanoma/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/metabolismo
8.
J Pharmacol Sci ; 149(3): 81-84, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35641031

RESUMO

Ciclesonide (Cic) is approved as an inhalant for asthma and was clinically tested as a candidate therapy for coronavirus disease 2019 (COVID-19). Its active metabolite Cic2 was recently reported to suppress genomic RNA replication of severe acute respiratory syndrome coronavirus 2. In this study, we designed and synthesized a set of ciclesonide-acetal (Cic-acetal) derivatives. Among designated compounds, some Cic-acetal derivatives with a linear alkyl chain exhibited strong viral copy-number reduction activities compared with Cic2. These compounds might serve as lead compounds for developing novel anti-COVID-19 agents.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Acetais/farmacologia , Antivirais/farmacologia , Humanos , Pregnenodionas , RNA Viral/genética , RNA Viral/farmacologia , SARS-CoV-2 , Replicação Viral/genética
9.
Bioorg Med Chem Lett ; 43: 128052, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33887440

RESUMO

Ciclesonide is an inhaled corticosteroid used to treat asthma and is currently undergoing clinical trials for treatment of coronavirus disease 2019 (COVID-19). An active metabolite of ciclesonide, Cic2, was recently reported to repress severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genomic RNA replication. Herein, we designed and synthesized a few types of ciclesonide analogues. Cic4 (bearing an azide group) and Cic6 (bearing a chloro group) potently decreased SARS-CoV-2 viral replication and had low cytotoxicity compared with Cic2 (bearing a hydroxy group). These compounds are promising as novel therapeutic agents for COVID-19 that show significant antiviral activity.


Assuntos
Tratamento Farmacológico da COVID-19 , Pregnenodionas/farmacologia , RNA Viral/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , COVID-19/virologia , Glucocorticoides/farmacologia , Humanos , RNA Viral/genética , SARS-CoV-2/genética , Replicação Viral/genética
10.
J Pept Sci ; 27(12): e3360, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34164880

RESUMO

Antimicrobial peptides (AMPs) are potential therapeutic agents against bacteria. We recently showed that a rationally designed AMP, termed Stripe, with an amphipathic distribution of native cationic and hydrophobic amino acids on its helical structure exhibited potent antimicrobial activity against Gram-positive and Gram-negative bacteria with negligible hemolytic activity and cytotoxicity. In this study, the structure-activity relationship of Stripe was elucidated by designing a series of antimicrobial peptides whereby amino acid residues of Stripe were exchanged with helix-destabilizing sarcosine residues. Stripe 1-5 peptides with hydrophobic amino acids substituted with sarcosine were predominantly unstructured and showed no antimicrobial activity, except against Escherichia coli (E. coli) (DH5α) cells. The activity against E. coli (DH5α) cells and the helicity of Stripe 1-5 peptides decreased concomitantly as the number of sarcosine residue substitutions increased. Stripe 1-5 peptides showed no hemolytic activity or cytotoxicity. The results indicate that sarcosine substitutions provide an approach to study the structure-activity relationship of helical AMPs, and the helicity of Stripe is an important feature defining its activity.


Assuntos
Bactérias Gram-Negativas , Bactérias Gram-Positivas , Antibacterianos/farmacologia , Peptídeos Antimicrobianos , Escherichia coli , Testes de Sensibilidade Microbiana , Estrutura Secundária de Proteína , Sarcosina/farmacologia , Relação Estrutura-Atividade
11.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34445478

RESUMO

Peptide-based target protein degradation inducers called PROTACs/SNIPERs have low cell penetrability and poor intracellular stability as drawbacks. These shortcomings can be overcome by easily modifying these peptides by conjugation with cell penetrating peptides and side-chain stapling. In this study, we succeeded in developing the stapled peptide stPERML-R7, which is based on the estrogen receptor alpha (ERα)-binding peptide PERML and composed of natural amino acids. stPERML-R7, which includes a hepta-arginine motif and a hydrocarbon stapling moiety, showed increased α-helicity and similar binding affinity toward ERα when compared with those of the parent peptide PERML. Furthermore, we used stPERML-R7 to develop a peptide-based degrader LCL-stPERML-R7 targeting ERα by conjugating stPERML-R7 with a small molecule LCL161 (LCL) that recruits the E3 ligase IAPs to induce proteasomal degradation via ubiquitylation. The chimeric peptide LCL-stPERML-R7 induced sustained degradation of ERα and potently inhibited ERα-mediated transcription more effectively than the unstapled chimera LCL-PERML-R7. These results suggest that a stapled structure is effective in maintaining the intracellular activity of peptide-based degraders.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Receptor alfa de Estrogênio/metabolismo , Tiazóis/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Receptor alfa de Estrogênio/genética , Humanos , Células MCF-7 , Ligação Proteica , Ubiquitinação
12.
J Biol Chem ; 294(44): 16429-16439, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31533987

RESUMO

Su(var)3-9, Enhancer-of-zeste, and Trithorax (SET) domain-containing protein 8 (SET8) is the sole enzyme that monomethylates Lys-20 of histone H4 (H4K20). SET8 has been implicated in the regulation of multiple biological processes, such as gene transcription, the cell cycle, and senescence. SET8 quickly undergoes ubiquitination and degradation by several E3 ubiquitin ligases; however, the enzyme that deubiquitinates SET8 has not yet been identified. Here we demonstrated that ubiquitin-specific peptidase 17-like family member (USP17) deubiquitinates and therefore stabilizes the SET8 protein. We observed that USP17 interacts with SET8 and removes polyubiquitin chains from SET8. USP17 knockdown not only decreased SET8 protein levels and H4K20 monomethylation but also increased the levels of the cyclin-dependent kinase inhibitor p21. As a consequence, USP17 knockdown suppressed cell proliferation. We noted that USP17 was down-regulated in replicative senescence and that USP17 inhibition alone was sufficient to trigger cellular senescence. These results reveal a regulatory mechanism whereby USP17 prevents cellular senescence by removing ubiquitin marks from and stabilizing SET8 and transcriptionally repressing p21.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Endopeptidases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Envelhecimento/metabolismo , Animais , Células COS , Ciclo Celular/fisiologia , Linhagem Celular , Proliferação de Células/fisiologia , Chlorocebus aethiops , Células HCT116 , Histonas/metabolismo , Humanos , Células MCF-7 , Metiltransferases/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia
13.
Bioorg Med Chem ; 28(15): 115595, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32631565

RESUMO

Peptide-based inducers of estrogen receptor (ER) α and androgen receptor (AR) degradations via the ubiquitin-proteasome system (UPS) were developed. The designated inducers were composed of two biologically active scaffolds: the helical peptide PERM3, which is an LXXLL-like mimic of the coactivator SRC-1, and various small molecules (MV1, LCL161, VH032, and POM) that bind to E3 ligases (IAPs, VHL, and cereblon, respectively), to induce ubiquitylation of nuclear receptors that bind to SRC-1. All of the synthesized chimeric E3 ligand-containing molecules induced the UPS-mediated degradation of ERα and AR. The PERM3 peptide was applicable for the development of the ERα and AR degraders using these E3 ligands.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Peptídeos/farmacologia , Proteólise/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Desenho de Fármacos , Receptor alfa de Estrogênio/química , Humanos , Células MCF-7 , Coativador 1 de Receptor Nuclear , Peptídeos/síntese química , Receptores Androgênicos/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos
14.
J Biol Chem ; 293(18): 6776-6790, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29545311

RESUMO

Aberrant expression of proteins often underlies many diseases, including cancer. A recently developed approach in drug development is small molecule-mediated, selective degradation of dysregulated proteins. We have devised a protein-knockdown system that utilizes chimeric molecules termed specific and nongenetic IAP-dependent protein erasers (SNIPERs) to induce ubiquitylation and proteasomal degradation of various target proteins. SNIPER(ER)-87 consists of an inhibitor of apoptosis protein (IAP) ligand LCL161 derivative that is conjugated to the estrogen receptor α (ERα) ligand 4-hydroxytamoxifen by a PEG linker, and we have previously reported that this SNIPER efficiently degrades the ERα protein. Here, we report that derivatization of the IAP ligand module yields SNIPER(ER)s with superior protein-knockdown activity. These improved SNIPER(ER)s exhibited higher binding affinities to IAPs and induced more potent degradation of ERα than does SNIPER(ER)-87. Further, they induced simultaneous degradation of cellular inhibitor of apoptosis protein 1 (cIAP1) and delayed degradation of X-linked IAP (XIAP). Notably, these reengineered SNIPER(ER)s efficiently induced apoptosis in MCF-7 human breast cancer cells that require IAPs for continued cellular survival. We found that one of these molecules, SNIPER(ER)-110, inhibits the growth of MCF-7 tumor xenografts in mice more potently than the previously characterized SNIPER(ER)-87. Mechanistic analysis revealed that our novel SNIPER(ER)s preferentially recruit XIAP, rather than cIAP1, to degrade ERα. Our results suggest that derivatized IAP ligands could facilitate further development of SNIPERs with potent protein-knockdown and cytocidal activities against cancer cells requiring IAPs for survival.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Animais , Antineoplásicos/farmacologia , Regulação para Baixo , Humanos , Ligantes , Células MCF-7 , Camundongos , Ligação Proteica , Proteólise , Tiazóis/farmacologia , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Drug Discov Today Technol ; 31: 35-42, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31200857

RESUMO

The induction of protein degradation by chimeric small molecules represented by proteolysis-targeting chimeras (PROTACs) is an emerging approach for novel drug development. We have developed a series of chimeric molecules termed specific and non-genetic inhibitor of apoptosis protein (IAP)-dependent protein erasers (SNIPERs) that recruit IAP ubiquitin ligases to effect targeted degradation. Unlike the chimeric molecules that recruit von Hippel-Lindau and cereblon ubiquitin ligases, SNIPERs induce simultaneous degradation of IAPs such as cIAP1 and XIAP along with the target proteins. Because cancer cells often overexpress IAPs-a mechanism involved in the resistance to cancer therapy-SNIPERs could be used to kill cancer cells efficiently.


Assuntos
Proteínas Inibidoras de Apoptose/metabolismo , Proteólise , Animais , Humanos , Leucina/análogos & derivados , Leucina/farmacologia , Neoplasias/metabolismo
16.
Biol Pharm Bull ; 42(3): 481-488, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30828079

RESUMO

Lysine-specific demethylase 1 (LSD1/KDM1A) is a histone demethylase and specifically catalyzes the demethylation of mono- and di-methylated histone H3 lysine 4 (H3K4). The LSD1-mediated demethylation of H3K4 promotes the assembly of the c-Myc-induced transcription initiation complex. Although LSD1 and c-Myc are both strongly expressed in human cancers, the mechanisms by which their activities are coordinated remain unclear. We herein demonstrated that LSD1 is a direct target gene of c-Myc. The knockdown of c-Myc decreased the expression of LSD1 in several cancer cell lines. We identified two non-canonical E-boxes in the proximal promoter region of the LSD1 gene. A chromatin immunoprecipitation assay showed that c-Myc bound to these E-boxes in the LSD1 promoter. Importantly, LSD1 mRNA expression correlated with c-Myc expression in human acute myeloid leukemia (AML), glioblastoma, stomach adenocarcinoma, and prostate adenocarcinoma. The present results suggest that LSD1 is induced by c-Myc and forms a positive feedback mechanism in transcription reactions by c-Myc.


Assuntos
Histona Desmetilases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Linhagem Celular Tumoral , Bases de Dados Factuais , Histona Desmetilases/genética , Humanos , Células-Tronco Neoplásicas , Proteínas Proto-Oncogênicas c-myc/genética , Interferência de RNA
17.
Chem Pharm Bull (Tokyo) ; 67(3): 165-172, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30827996

RESUMO

Chromosomal translocation occurs in some cancer cells, resulting in the expression of aberrant oncogenic fusion proteins that include BCR-ABL in chronic myelogenous leukemia (CML). Inhibitors of ABL tyrosine kinase, such as imatinib and dasatinib, exhibit remarkable therapeutic effects, although emergence of drug resistance hampers the therapy during long-term treatment. An alternative approach to treat CML is to downregulate expression of the BCR-ABL protein. Recently, we have devised a protein knockdown system by hybrid molecules named Specific and Nongenetic inhibitor of apoptosis protein [IAP]-dependent Protein Erasers (SNIPER). This system is designed to induce IAP-mediated ubiquitylation and proteasomal degradation of target proteins. In this review, we describe the development of SNIPER against BCR-ABL, and discuss the features and prospect for treatment of CML.


Assuntos
Proteínas de Fusão bcr-abl/antagonistas & inibidores , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Oncogenes , Antineoplásicos/uso terapêutico , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinação
18.
Chem Pharm Bull (Tokyo) ; 67(3): 203-209, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30369550

RESUMO

Targeted protein degradation by small molecules is an emerging modality with significant potential for drug discovery. We previously developed chimeric molecules, termed specific and non-genetic inhibitor of apoptosis protein (IAP)-dependent protein erasers (SNIPERs), which induce the ubiquitylation and proteasomal degradation of target proteins. This degradation is mediated by the IAPs; the target proteins include bromodomain-containing protein 4 (BRD4), an epigenetic regulator protein. The SNIPER that degrades this particular protein, SNIPER(BRD)-1, consists of an IAP antagonist LCL-161 derivative and a bromodomain and extra-terminal (BET) inhibitor, (+)-JQ-1. SNIPER(BRD)-1 also degrades a cellular inhibitor of apoptosis protein 1 (cIAP1) and an X-linked inhibitor of apoptosis protein (XIAP), the mechanisms of which are not well understood. Here, we show that the degradation of cIAP1 and XIAP by SNIPER(BRD)-1 is induced via different mechanisms. Using a chemical biology-based approach, we developed two inactive SNIPERs, SNIPER(BRD)-3 and SNIPER(BRD)-4, incapable of degrading BRD4. SNIPER(BRD)-3 contained an N-methylated LCL-161 derivative as the IAP ligand, which prevented it from binding IAPs, and resulted in the abrogated degradation of cIAP1, XIAP, and BRD4. SNIPER(BRD)-4, however, incorporated the enantiomer (-)-JQ-1 which was incapable of binding BRD4; this SNIPER degraded cIAP1 but lost the ability to degrade XIAP and BRD4. Furthermore, a mixture of the ligands, (+)-JQ-1 and LCL-161, induced the degradation of cIAP1, but not XIAP and BRD4. These results indicate that cIAP1 degradation is triggered by the binding of the IAP antagonist module to induce autoubiquitylation of cIAP1, whereas a ternary complex formation is required for the SNIPER-induced degradation of XIAP and BRD4.


Assuntos
Proteínas Inibidoras de Apoptose/metabolismo , Proteólise , Azepinas/química , Proteínas de Ciclo Celular , Humanos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Ligantes , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Proteólise/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Triazóis/química , Ubiquitinação , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
19.
Molecules ; 24(17)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461933

RESUMO

In response to cellular stresses, activating transcriptional factor 4 (ATF4) regulates the expression of both stress-relieving genes and apoptosis-inducing genes, eliciting cell fate determination. Since pharmacological activation of ATF4 exerts potent anti-tumor effects, modulators of ATF4 activation may have potential in cancer therapy. We herein attempted to identify small molecules that activate ATF4. A cell-based screening to monitor TRB3 promoter activation was performed using crude drugs used in traditional Japanese Kampo medicine. We found that an extract from Sophora flavescens roots exhibited potent TRB3 promoter activation. The activity-guided fractionation revealed that kurarinone was identified as the active ingredient. Intriguingly, ATF4 activation in response to kurarinone required PKR-like endoplasmic reticulum kinase (PERK). Moreover, kurarinone induced the cyclin-dependent kinase inhibitor p21 as well as cytostasis in cancer cells. Importantly, the cytostatic effect of kurarinone was reduced by pharmacological inhibition of PERK. These results indicate that kurarinone triggers ATF4 activation through PERK and exerts cytostatic effects on cancer cells. Taken together, our results suggest that modulation of the PERK-ATF4 pathway with kurarinone has potential as a cancer treatment.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Proteínas de Ciclo Celular/genética , Flavonoides/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Repressoras/genética , Sophora/química , eIF-2 Quinase/metabolismo , Fator 4 Ativador da Transcrição/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Células HeLa , Humanos , Fosforilação , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , eIF-2 Quinase/genética
20.
J Biol Chem ; 292(11): 4556-4570, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28154167

RESUMO

Many diseases, especially cancers, result from aberrant or overexpression of pathogenic proteins. Specific inhibitors against these proteins have shown remarkable therapeutic effects, but these are limited mainly to enzymes. An alternative approach that may have utility in drug development relies on selective degradation of pathogenic proteins via small chimeric molecules linking an E3 ubiquitin ligase to the targeted protein for proteasomal degradation. To this end, we recently developed a protein knockdown system based on hybrid small molecule SNIPERs (Specific and Nongenetic IAP-dependent Protein Erasers) that recruit inhibitor of the apoptosis protein (IAP) ubiquitin ligases to specifically degrade targeted proteins. Here, we extend our previous study to show a proof of concept of the SNIPER technology in vivo By incorporating a high affinity IAP ligand, we developed a novel SNIPER against estrogen receptor α (ERα), SNIPER(ER)-87, that has a potent protein knockdown activity. The SNIPER(ER) reduced ERα levels in tumor xenografts and suppressed the growth of ERα-positive breast tumors in mice. Mechanistically, it preferentially recruits X-linked IAP (XIAP) rather than cellular IAP1, to degrade ERα via the ubiquitin-proteasome pathway. With this IAP ligand, potent SNIPERs against other pathogenic proteins, BCR-ABL, bromodomain-containing protein 4 (BRD4), and phosphodiesterase-4 (PDE4) could also be developed. These results indicate that forced ubiquitylation by SNIPERs is a useful method to achieve efficient protein knockdown with potential therapeutic activities and could also be applied to study the role of ubiquitylation in many cellular processes.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Proteólise/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/uso terapêutico , Animais , Antineoplásicos/farmacologia , Mama/efeitos dos fármacos , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Linhagem Celular Tumoral , Descoberta de Drogas , Receptor alfa de Estrogênio/antagonistas & inibidores , Feminino , Humanos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Complexo de Endopeptidases do Proteassoma/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Ubiquitinação/efeitos dos fármacos , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA