Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 43(20): e2200407, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35997136

RESUMO

Synthetic silicone rubbers are finding a broad spectrum of applications, yet there is a demand for developing greener silicone rubbers with processability, recyclability, and reversible tunability in their mechanical properties. Here, a recyclable photorheological silicone fluid (RPSF) is developed, which realizes completely reversible wavelength-selective liquid-rubber conversion upon photoirradiation, relying on the reversible photocycloaddition of coumarin upon alternating irradiation of light with wavelengths of 365 (UV365 ) and 254 nm (UV254 ). Rheological studies demonstrate that the storage modulus of the developed RPSF increases by a factor of more than 100 000 upon UV365 irradiation to reach 20-50 kPa, while it decreases to ≈0.01 kPa upon UV254 irradiation. The reversibility of the photocycloaddition of coumarin enables the application of RPSF as a photodismantlable adhesive. Furthermore, unprecedented vat-photocycloaddition 3D printing of silicone rubber is realized by taking advantage of the excellent photocurability, that is, the dramatic increase in viscoelasticity upon UV365 irradiation.

2.
Macromol Rapid Commun ; 43(2): e2100567, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34669216

RESUMO

Perfluoropolyether (PFPE) is an industrially important fluoropolymer and has great industrial importance due to its flexible, noncombustible, and chemically robust properties. However, exploration and application of chemically modified homogeneous PFPEs are hampered by their immiscibility against nonfluorine-containing molecules. Here, the synthesis is reported of cyclic PFPE with hexaarylbiimidazoles (HABIs) in chains from linear PFPE having 2,4,5-triphenylimidazole (lophine) end groups. While phase separation between the end groups and main chains took place for linear PFPE, HABIs and main chains in cyclic PFPE are miscible to form transparent glass films. The design of cyclic PFPE also enables cyclic to linear topological transformation based on conversion of HABIs into lophines upon mild heating in the glass film state. Sequential linear-to-cyclic and cyclic-to-linear topological transformations enable fabrication of thermostabilized transparent films derived from PFPE.


Assuntos
Éteres , Fluorocarbonos , Vidro
3.
Angew Chem Int Ed Engl ; 58(1): 144-148, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30353631

RESUMO

Repeatable topological transformation of polymers for the modulation of material functions is a challenge. We have developed a method for repeatedly resetting a cyclic macromolecular architecture to a linear architecture by photostimulation, namely, topology-reset execution (T-rex) based on the photochemistry of hexaarylbiimidazoles (HABIs). We synthesized cyclic poly(dimethylsiloxane)s (PDMSs) of various ring sizes with HABIs linked in the chains. UV irradiation of the cyclic PDMSs produced telechelic linear PDMSs with triphenylimidazolyl radical (TPIR) end groups. After termination of UV irradiation, end-to-end recyclization occurred by the recoupling of TPIRs. The cyclic PDMSs also responded to ultrasound, which decreased their molecular weight (MW) by site-specific cleavage of in-chain HABI moieties, and we are able to reset the MWs by subsequent phototriggered T-rex. Furthermore, T-rex enabled solvent-free switching of the rheological properties of the materials while retaining the liquid character of PDMS.

4.
Adv Mater ; 35(39): e2304104, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37341986

RESUMO

Advances in vat photopolymerization (VP) 3D printing (3DP) technology enable the production of highly precise 3D objects. However, it is a major challenge to create dynamic functionalities and to manipulate the physical properties of the inherently insoluble and infusible cross-linked material generated from VP-3DP without reproduction. The fabrication of light- and high-intensity focused ultrasound (HIFU)-responsive cross-linked polymeric materials linked with hexaarylbiimidazole (HABI) in polymer chains based on VP-3DP is reported here. Although the photochemistry of HABI produces triphenylimidazolyl radicals (TPIRs) during the process of VP-3DP, the orthogonality of the photochemistry of HABI and photopolymerization enables the introduction of reversible cross-links derived from HABIs in the resulting 3D-printed objects. While photostimulation cleaves a covalent bond between two imidazoles in HABI to generate TPIRs only near the surface of the 3D-printed objects, HIFU triggers cleavage in the interior of materials. In addition, HIFU travels beyond an obstacle to induce a response of HABI-embedded cross-linked polymers, which cannot be attainable with photostimulation. The present system would be beneficial for tuning the physical properties and recycling of various polymeric materials, but it will also open the door for pinpoint modification, healing, and reshaping of materials when coupled to various dynamic covalent materials.

5.
Commun Chem ; 4(1): 130, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36697598

RESUMO

Coupling reactions between polymers are an important class of chemical modifications for changing, enhancing, and tuning the properties of polymeric materials. In particular, transformation of polymer topologies based on efficient, facile and less wasted coupling reactions remains a significant challenge. Here, we report coupling reactions based on electrochemical oxidation of 2,4,5-triphenylimidazole into a 2,4,5-triphenylimidazolyl radical and its spontaneous dimerization into hexaarylbiimidazole. Based on this chemistry, electrochemical topological transformation (ETT) and electrochemical chain extension have been realized with siloxane-based oligomers and polymers. Moreover, this approach enables one step ETT of star-shaped poly(dimethyl siloxane)s (PDMSs) into network PDMSs, running in an ionic liquid solvent and requiring no purification steps.

6.
Adv Sci (Weinh) ; 8(19): e2101143, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34338448

RESUMO

The development of solventless system for modulating properties of network materials is imperative for the next generation sustainable technology. Utilization of photostimulation is important owing to its spatial and temporal locality, yet designing photoresponsive network materials exhibiting repeatable and dramatic change in their properties remains a challenge. Here, the authors report a photocleavable regenerative network (PRN) linked with photoresponsive hexaarylbiimidazoles (HABIs) synthesized from narrow dispersity star-shaped poly(dimethylsiloxane)s (PDMSs) having 2,4,5-triphenylimidazole end groups. The use of urea anion as a catalyst for ring opening polymerization (ROP) of cyclic siloxane initiated from silanols enables control of molecular weight and dispersity. The rheological measurements for the synthesized PRNs exhibit drastic changes in storage and loss moduli (G' and G″) upon photoirradiation in the solid state (G' > G″). This photocontrolled change in viscoelasticity with retaining solidity enables application of PRNs as a remotely-controlled photo-melt adhesive and photo-scissible string. The developed PRNs will enable a wide variety of applications such as industrially important next-generation sustainable adhesive, sealant, and reversibly-deformable 3D printing materials with their spatially and temporally local manipulability, solventless handleability, and excellent reversibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA