Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Spectrosc ; 78(4): 376-386, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38303555

RESUMO

Many baseline correction approaches have been developed to address baseline artifacts observed in measured infrared (IR) absorption spectra during post-processing. These approaches offer distinct advantages and disadvantages, and the choice of which one to employ depends on the complexity of baseline artifacts present in a particular application. In this paper, we compare the performance of two baseline correction approaches: a frequency-domain polynomial fitting approach and a time-domain modified free induction decay approach, under various baseline scenarios, spectral resolutions, and noise levels for mixtures containing up to 464 species. Our results showed that the frequency-domain approach outperformed the time-domain approach by a factor of up to 16 when the baseline was represented by a sine wave with fewer than two cycles over the full spectral range. On the other hand, the time-domain approach performed up to 12 times better when the baseline featured two cycles of a sine wave. Additionally, we observed that the time-domain approach exhibited higher sensitivity to spectral resolution and underperformed when the noise level was high. The findings of this study emphasize the importance of numerically testing a few candidate approaches for a given application, taking into consideration baseline characteristics, as well as the spectral resolution and noise constraints of the application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA