Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Appl Toxicol ; 41(8): 1200-1221, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33486801

RESUMO

Under the Organisation for Economic Co-operation and Development (OECD), the Ministry of the Environment of Japan (MOE) added Japanese medaka (Oryzias latipes) to the test guideline fish short-term reproduction assay (FSTRA) developed by the United States Environmental Protection Agency (US EPA) using fathead minnow (Pimephales promelas). The FSTRA was designed to detect endocrine disrupting effects of chemicals interacting with the hypothalamic-pituitary-gonadal axis (HPG axis) such as agonists or antagonists on the estrogen receptor (Esr) and/or the androgen receptor (AR) and steroidogenesis inhibitors. We conducted the FSTRA with Japanese medaka, in accordance with OECD test guideline number 229 (TG229), for 16 chemicals including four Esr agonists, two Esr antagonists, three AR agonists, two AR antagonists, two steroidogenesis inhibitors, two progesterone receptor agonists, and a negative substance, and evaluated the usability and the validity of the FSTRA (TG229) protocol. In addition, in vitro reporter gene assays (RGAs) using Esr1 and ARß of Japanese medaka were performed for the 16 chemicals, to support the interpretation of the in vivo effects observed in the FSTRA. In the present study, all the test chemicals, except an antiandrogenic chemical and a weak Esr agonist, significantly reduced the reproductive status of the test fish, that is, fecundity or fertility, at concentrations where no overt toxicity was observed. Moreover, vitellogenin (VTG) induction in males and formation of secondary sex characteristics (SSC), papillary processes on the anal fin, in females was sensitive endpoints to Esr and AR agonistic effects, respectively, and might be indicators of the effect concentrations in long-term exposure. Overall, it is suggested that the in vivo FSTRA supported by in vitro RGA data can adequately detect effects on the test fish, O. latipes, and probably identify the mode of action (MOA) of the chemicals tested.


Assuntos
Bioensaio/métodos , Disruptores Endócrinos/toxicidade , Testes de Toxicidade/métodos , Antagonistas de Receptores de Andrógenos/toxicidade , Androgênios/toxicidade , Animais , Antagonistas do Receptor de Estrogênio/toxicidade , Estrogênios/agonistas , Feminino , Masculino , Oryzias/fisiologia , Receptores de Progesterona/agonistas , Receptores de Progesterona/antagonistas & inibidores , Reprodução/efeitos dos fármacos
2.
Zoolog Sci ; 36(5): 425-431, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33319967

RESUMO

We compared sex-reversal ratios induced by 17α-methyltestosterone (MT) and 17ß-estradiol (E2) exposure in two inbred medaka strains: Hd-rR derived from Oryzias latipes and HNI-II from O. sakaizumii. All MT exposures (0.2-25 ng mL-1) induced complete XX sex-reversal in HNI-II. Although MT exposure at 0.2 ng mL-1 induced XX sex-reversal at > 95% in Hd-rR, other concentrations tested caused XX sex-reversal at lower frequencies (<50%). MT exposure at 1, 5, and 25 ng mL-1 induced XY sex-reversal in Hd-rR, but not in HNI-II. In Hd-rR, E2 exposure induced XY sex-reversal at > 10 ng mL-1, and in all fish feminization occurred 500 ng mL-1. In HNI-II, E2 induced XY sex-reversal at 50 and 250 ng mL-1, but only at rates below 20%. To clarify whether the strain differences in sex hormone-induced sex-reversal are characteristic of each species, we examined the effects of MT and E2 exposure on sex differentiation in five and two additional strains or wild stocks/populations of O. latipes and O. sakaizumii, respectively. MT exposure induced low XX and high XY sex-reversal rates in O. latipes, except in the Shizuoka population, but the trend was reversed in O. sakaizumii. Furthermore, E2-induced XY sex-reversal rates varied intraspecifically in O. latipes. Our results demonstrated that sensitivity to MT and E2 varied within O. latipes species. To evaluate the ecological impacts of environmental chemicals using medaka, it is important to define not only the species, but the strains, stocks, and populations to obtain accurate results.


Assuntos
Estradiol/farmacologia , Metiltestosterona/farmacologia , Oryzias/metabolismo , Processos de Determinação Sexual/efeitos dos fármacos , Animais , Estradiol/administração & dosagem , Estradiol/genética , Feminino , Gônadas/efeitos dos fármacos , Masculino , Metiltestosterona/administração & dosagem , Fenótipo , Diferenciação Sexual/efeitos dos fármacos , Especificidade da Espécie
3.
Zoolog Sci ; 33(1): 31-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26853866

RESUMO

The freshwater crustacean genus Daphnia has been used extensively in ecological, developmental and ecotoxicological studies. Daphnids produce only female offspring by parthenogenesis under favorable conditions, but in response to various unfavorable conditions and external stimuli, they produce male offspring. Although we reported that exogenous exposure to juvenile hormones and their analogs can induce male offspring even under female-producing conditions, we recently established a male induction system in the Daphnia pulex WTN6 strain simply by changing day-length. This male and female induction system is suitable for understanding the innate mechanisms of sexual dimorphic development in daphnids. Embryogenesis has been described as a normal plate (developmental staging) in various daphnid species; however, all studies have mainly focused on female development. Here, we describe the developmental staging of both sexes during embryogenesis in two representative daphnids, D. pulex and D. magna, based on microscopic time-course observations. Our findings provide the first detailed insights into male embryogenesis in both species, and contribute to the elucidation of the mechanisms underlying sexual differentiation in daphnids.


Assuntos
Daphnia/embriologia , Desenvolvimento Embrionário , Animais , Feminino , Masculino , Fatores Sexuais
4.
Chemosphere ; 274: 129893, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33979926

RESUMO

To clarify the basal aspects of sexual development in Javafish medaka, Oryzias javanicus (ZZ/ZW), a model marine species for ecotoxicity testing, we examined the details of gonadal sex differentiation and exogenous sex hormone-dependent sex reversals using genetic sex-linked DNA markers. Sex differences in germ cell numbers were observed at 5 days post hatching (dph), in which there was a significant increase in the germ cells of ZW. In ZW, diplotene oocytes and the ovarian cavity appeared at approximately 10, and 30 dph, respectively. In ZZ, spermatogonial proliferation was observed at approximately 20 dph. A ZZ-dominant expression of Gonadal soma-derived factor (Gsdf) mRNA was detected before hatching. The exposure of embryos to 17α-ethinylestradiol (EE2; 0.1, 1, 10 ng/mL) did not cause sex reversals in most cases. However, EE2 exposures led to significant Choriogenin-H (ChgH) mRNA expression, an estrogen up-regulated gene, in all fry; these exposures did not suppress Gsdf expression in ZZ fry. The exposure of embryos to 17α-methyltestosterone (MT; 0.1, 1, 10 ng/mL) caused sex reversals but only at low frequencies in ZW and ZZ fish. Although the 10 ng/mL MT exposure was accompanied by induction of significant Gsdf expression in ZW fry, induction of ChgH expression was also observed in several fry. Together, the present study indicates for the first time that male-dominant sexual dimorphic expression of Gsdf precedes the first morphological sex difference, i.e., the sex difference in germ cell number, and results strongly suggest that exogenous sex hormone-dependent sex reversal is not induced easily in O. javanicus.


Assuntos
Oryzias , Animais , Estrogênios , Feminino , Expressão Gênica , Gônadas , Masculino , Oryzias/genética , Diferenciação Sexual/genética
5.
Aquat Toxicol ; 191: 209-218, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28866280

RESUMO

Testis-ova differentiation in sexually mature male medaka (Oryzias latipes) is easily induced by estrogenic chemicals, indicating that spermatogonia persist in sexual bipotentiality, even in mature testes in medaka. By contrast, the effects of estrogen on testicular somatic cells associated with testis-ova differentiation in medaka remain unclear. In this study, we focused on the dynamics of sex-related genes (Gsdf, Dmrt1, and Foxl2) expressed in Sertoli cells in the mature testes of adult medaka during estrogen-induced testis-ova differentiation. When mature male medaka were exposed to estradiol benzoate (EB; 800ng/L), testis-ova first appeared after EB treatment for 14days (observed as the first oocytes of the leptotene-zygotene stage). However, the testis remained structurally unchanged, even after EB treatment for 28days. Although Foxl2 is a female-specific sex gene, EB treatment for 7days induced Foxl2/FOXL2 expression in all Sertoli cell-enclosed spermatogonia before testis-ova first appeared; however, Foxl2 was not detected in somatic cells in control testes. Conversely, Sertoli-cell-specific Gsdf mRNA expression levels significantly decreased after EB treatment for 14days, and no changes were observed in DMRT1 localization following EB treatment, whereas Dmrt1 mRNA levels increased significantly. Furthermore, after EB exposure, FOXl2 and DMRT1 were co-localized in Sertoli cells during testis-ova differentiation, although FOXL2 localization was undetectable in Sertoli-cell-enclosed apoptotic testis-ova, whereas DMRT1 remained localized in Sertoli cells. These results indicated for the first time that based on the expression of female-specific sex genes, feminization of Sertoli cells precedes testis-ova differentiation induced by estrogen in mature testes in medaka; however, complete feminization of Sertoli cells was not induced in this study. Additionally, it is suggested strongly that Foxl2 and Gsdf expression constitute potential molecular markers for evaluating the effects of estrogenic chemicals on testicular somatic cells associated with estrogen-induced testis-ova differentiation in mature male medaka.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Estradiol/análogos & derivados , Proteínas de Peixes/metabolismo , Proteína Forkhead Box L2/metabolismo , Oryzias/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Estradiol/toxicidade , Feminino , Proteínas de Peixes/genética , Proteína Forkhead Box L2/genética , Imuno-Histoquímica , Masculino , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Oryzias/crescimento & desenvolvimento , RNA Mensageiro/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA