Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 232(2): 928-940, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34270808

RESUMO

The evolution of herbicide resistance in weeds is an example of parallel evolution, through which genes encoding herbicide target proteins are repeatedly represented as evolutionary targets. The number of herbicide target-site genes differs among species, and little is known regarding the effects of duplicate gene copies on the evolution of herbicide resistance. We investigated the evolution of herbicide resistance in Monochoria vaginalis, which carries five copies of sulfonylurea target-site acetolactate synthase (ALS) genes. Suspected resistant populations collected across Japan were investigated for herbicide sensitivity and ALS gene sequences, followed by functional characterization and ALS gene expression analysis. We identified over 60 resistant populations, all of which carried resistance-conferring amino acid substitutions exclusively in MvALS1 or MvALS3. All MvALS4 alleles carried a loss-of-function mutation. Although the enzymatic properties of ALS encoded by these genes were not markedly different, the expression of MvALS1 and MvALS3 was prominently higher among all ALS genes. The higher expression of MvALS1 and MvALS3 is the driving force of the biased representation of genes during the evolution of herbicide resistance in M. vaginalis. Our findings highlight that gene expression is a key factor in creating evolutionary hotspots.


Assuntos
Acetolactato Sintase , Herbicidas , Acetolactato Sintase/genética , Expressão Gênica , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Proteínas de Plantas/genética , Plantas Daninhas/genética
2.
Ambio ; 45(8): 895-903, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27118183

RESUMO

In this study, we propose a method for estimating the risk of agricultural damage caused by an invasive species when species-specific information is lacking. We defined the "risk" as the product of the invasion probability and the area of potentially damaged crop for production. As a case study, we estimated the risk imposed by an invasive weed, Sicyos angulatus, based on simple cellular simulations and governmental data on the area of crop that could potentially be damaged in Miyagi Prefecture, Japan. Simulation results revealed that the current distribution range was sufficiently accurate for practical purposes. Using these results and records of crop areas, we present risk maps for S. angulatus in agricultural fields. Managers will be able to use these maps to rapidly establish a management plan with minimal cost. Our approach will be valuable for establishing a management plan before or during the early stages of invasion.


Assuntos
Agricultura/métodos , Cucurbitaceae/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Modelos Teóricos , Plantas Daninhas/crescimento & desenvolvimento , Agricultura/economia , Agricultura/tendências , Simulação por Computador , Análise Custo-Benefício , Produtos Agrícolas/crescimento & desenvolvimento , Ecologia , Mapeamento Geográfico , Espécies Introduzidas , Japão , Risco
3.
Ann Bot ; 92(3): 357-64, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12853283

RESUMO

Low irradiance in the early phase of grain filling in rice often results in a low grain yield, but its effects on the partitioning of previously or recently assimilated carbon within the plant or panicle have not been seriously examined. The objective of this study was to demonstrate the effect of shading during the different stages in the early phase of grain filling on the partitioning of previously or recently assimilated carbon among constituent organs and into superior and inferior spikelets of the panicle in rice (Oryza sativa L. 'Sasanishiki') plants using 13C as a tracer. Plants were grown either under low (shading) or moderate (non-shading) irradiance (120 and 800 micromol quantum m(-2) s(-1)) for 3 or 4 d before or after the 13CO2 feeding at heading, full-heading or milky stages during the early phase of grain filling. Four days after the 13CO2 feeding, the proportion of labelled (previously assimilated) carbon partitioned into the panicle was 17% higher in plants grown under low irradiance compared with plants grown under moderate irradiance at the full-heading stage (7-11 d after heading), while the proportion partitioned into the culm was 13% lower. The light treatments for 3 d were conducted before the 13CO2 feeding and partitioning of the labelled (recently-assimilated) carbon into spikelets was examined 6 h after feeding. The amount of labelled carbon partitioned into the spikelets of the secondary branch (inferior grains) in the plants grown under low irradiance was only 31% when compared with plants grown under moderate irradiance at the full-heading stage, although the partitioning of labelled carbon into the apical spikelets of the primary branch (superior grains) was not affected by the light treatments. These results clearly indicate that preferential partitioning of assimilated carbon into the panicle occurs under low irradiance at around 7-11 d after heading and that the priority of superior spikelets for assimilated carbon intensifies. This phenomenon is thought to be an important strategy for such rice cultivars as used in this study to achieve a certain proportion of ripened grains even under light limited conditions.


Assuntos
Carbono/metabolismo , Luz , Oryza/efeitos da radiação , Sementes/efeitos da radiação , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Sementes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA