Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 18(5): 2066-2081, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33784104

RESUMO

Dissolution of amorphous solid dispersions (ASD) can lead to the formation of amorphous drug-rich nano species (nanodroplets) via liquid-liquid phase separation or glass-liquid phase separation when the drug concentration exceeds the amorphous solubility. These nanodroplets have been shown to be beneficial for ASD performance both in vitro and in vivo. Thus, understanding the generation and stability of nanodroplets from ASD formulations is important. In this study, the impacts of polymer selection and active pharmaceutical ingredient (API) physicochemical properties (wet glass transition temperature (Tg) and log P) on nanodroplet release were studied. Six APIs with different physicochemical properties were formulated as ASDs with two polymers, polyvinylpyrrolidone/vinyl acetate (PVPVA) and hydroxypropyl methylcellulose acetate succinate (HPMCAS). Their release performance was evaluated using both powder and surface normalized dissolution of compacts. In general, HPMCAS-based dispersions resulted in higher drug release compared to PVPVA-based dispersions. The two polymers also exhibited different trends in nanodroplet formation as a function of drug loading (DL). PVPVA ASDs exhibited a "falling-off-the-cliff" effect, with a dramatic decline in release performance with a small increase in drug loading, while HPMCAS ASDs exhibited a negative "slope" in the release rate as a function of drug loading. For both polymers, low Tg compounds achieved higher levels of nanodroplet formation compared to high Tg compounds. The nanodroplets generated from ASD dissolution were also monitored with dynamic light scattering, and HPMCAS was found to be more effective at stabilizing nanodroplets against size increase. Insights from this study may be used to guide formulation design and selection of excipients based on API physicochemical properties.


Assuntos
Excipientes/química , Preparações Farmacêuticas/química , Química Farmacêutica , Cristalização , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Metilcelulose/análogos & derivados , Metilcelulose/química , Nanopartículas/química , Pirrolidinas/química , Solubilidade , Temperatura de Transição , Compostos de Vinila/química
2.
Pharmaceutics ; 15(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36839916

RESUMO

Compressed mini-tablets in sachets or capsules are an increasingly prevalent oral solid dosage form for pediatric products. While resembling adult tablets, additional care is required to control weight and potency (blend uniformity) variation due to their small size (≤2.5 mm average diameter). Additionally, sachet fill count errors complicate dose accuracy as they are difficult to resolve with weight-checking equipment. This study quantified the probability of failing content uniformity (CU) specifications (which results in the inability to release a batch) defined in USP <905> using a Monte Carlo computational model. Failure risk was modeled as a function of sachet fill count, mini-tablet weight, potency distribution, and fill error frequency. The model allows product developers to (1) determine appropriate fill counts based on anticipated product weight and potency relative standard deviation (RSD), (2) set fill error probability tolerances for sachet filling processes, (3) identify CU improvement opportunities, and (4) quantify the probability of CU failure informing risk management activities and risk disclosure for regulatory agencies. A representative product with weight and potency RSD no greater than 5%, fill count of 1-4 mini-tablets per sachet, and fill error probability per mini-tablet filled of 0.1% may experience CU batch failure probabilities as high as 8.23%, but only 0.283% if the fill count is increased to 5-10 mini-tablets per sachet. Generally, fill counts of less than five mini-tablets per sachet should be avoided where possible.

3.
J Med Chem ; 65(7): 5593-5605, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35298158

RESUMO

We have identified a series of novel insulin receptor partial agonists (IRPAs) with a potential to mitigate the risk of hypoglycemia associated with the use of insulin as an antidiabetic treatment. These molecules were designed as dimers of native insulin connected via chemical linkers of variable lengths with optional capping groups at the N-terminals of insulin chains. Depending on the structure, the maximal activation level (%Max) varied in the range of ∼20-70% of native insulin, and EC50 values remained in sub-nM range. Studies in minipig and dog demonstrated that IRPAs had sufficient efficacy to normalize plasma glucose levels in diabetes, while providing reduction of hypoglycemia risk. IRPAs had a prolonged duration of action, potentially making them suitable for once-daily dosing. Two lead compounds with %Max values of 30 and 40% relative to native insulin were selected for follow up studies in the clinic.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemia , Animais , Glicemia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cães , Hipoglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Receptor de Insulina , Suínos , Porco Miniatura , Índice Terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA