Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498944

RESUMO

Formation of foam cells as a result of excess lipid accumulation by macrophages is a pathological hallmark of atherosclerosis. Fingolimod (FTY720) is an immunosuppressive agent used in clinical settings for the treatment of multiple sclerosis and has been reported to inhibit atherosclerotic plaque development. However, little is known about the effect of FTY720 on lipid accumulation leading to foam cell formation. In this study, we investigated the effects of FTY720 on lipid accumulation in murine macrophages. FTY720 treatment reduced lipid droplet formation and increased the expression of ATP-binding cassette transporter A1 (ABCA1) in J774 mouse macrophages. FTY720 also enhanced the expression of liver X receptor (LXR) target genes such as FASN, APOE, and ABCG1. In addition, FTY720-induced upregulation of ABCA1 was abolished by knockdown of sphingosine kinase 2 (SphK2) expression. Furthermore, we found that FTY720 treatment induced histone H3 lysine 9 (H3K9) acetylation, which was lost in SphK2-knockdown cells. Taken together, FTY720 induces ABCA1 expression through SphK2-mediated acetylation of H3K9 and suppresses lipid accumulation in macrophages, which provides novel insights into the mechanisms of action of FTY720 on atherosclerosis.


Assuntos
Aterosclerose , Cloridrato de Fingolimode , Camundongos , Animais , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Cloridrato de Fingolimode/uso terapêutico , Colesterol/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Células Espumosas/metabolismo , Aterosclerose/metabolismo
2.
IUBMB Life ; 72(4): 641-651, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31794135

RESUMO

Deposition of amyloid protein, particularly Aß1-42 , is a major contributor to the onset of Alzheimer's disease (AD). However, almost no deposition of Aß in the peripheral tissues could be found. Human serum albumin (HSA), the most abundant protein in the blood, has been reported to inhibit amyloid formation through binding Aß, which is believed to play an important role in the peripheral clearance of Aß. We identified the Aß binding site on HSA and developed HSA mutants with high binding capacities for Aß using a phage display method. HSA fragment 187-385 (Domain II) was found to exhibit the highest binding capacity for Aß compared with the other two HSA fragments. To elucidate the sequence that forms the binding site for Aß on Domain II, a random screening of Domain II display phage biopanning was constructed. A number of mutants with higher Aß binding capacities than the wild type were identified. These mutants exhibited stronger scavenging abilities than the wild type, as revealed via in vitro equilibrium dialysis of Aß experiments. These findings provide useful basic data for developing a safer alternative therapy than Aß vaccines and for application in plasma exchange as well as extracorporeal dialysis.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Biblioteca de Peptídeos , Albumina Sérica Humana/metabolismo , Doença de Alzheimer/tratamento farmacológico , Sítios de Ligação , Bioprospecção , Humanos , Mutação , Domínios Proteicos , Albumina Sérica Humana/genética
3.
Am J Pathol ; 189(2): 308-319, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30414409

RESUMO

The highly sulfated domains of heparan sulfate (HS), alias HS S-domains, are made up of repeated trisulfated disaccharide units [iduronic acid (2S)-glucosamine (NS, 6S)] and are selectively remodeled by extracellular endoglucosamine 6-sulfatases (Sulfs). Although HS S-domains are critical for signal transduction of several growth factors, their roles in amyloidoses are not yet fully understood. Herein, we found HS S-domains in the kidney of a patient with transthyretin amyloidosis. In in vitro assays with cells stably expressing human Sulfs, heparin, a structural analog of HS S-domains, promoted aggregation of transthyretin in an HS S-domain-dependent manner. Interactions of cells with transthyretin fibrils and cytotoxicity of these fibrils also depended on HS S-domains at the cell surface. Furthermore, glypican-5, encoded by the susceptibility gene for nephrotic syndrome GPC5, was found to be accumulated in the transthyretin amyloidosis kidney. Our study, thus, provides a novel insight into the pathologic roles of HS S-domains in amyloidoses, and we propose that enzymatic remodeling of HS chains by Sulfs may offer an effective approach to inhibiting formation and cytotoxicity of amyloid fibrils.


Assuntos
Neuropatias Amiloides Familiares/metabolismo , Amiloide/metabolismo , Heparitina Sulfato/metabolismo , Rim/metabolismo , Síndrome Nefrótica/metabolismo , Pré-Albumina/metabolismo , Adulto , Idoso , Neuropatias Amiloides Familiares/patologia , Feminino , Glipicanas/metabolismo , Humanos , Rim/patologia , Masculino , Pessoa de Meia-Idade , Síndrome Nefrótica/patologia , Sulfotransferases/metabolismo
4.
J Immunol ; 201(10): 2969-2976, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30333124

RESUMO

Treating cancer with vaccines has been a challenge. In this study, we introduce a novel Ag delivery platform for cancer vaccines that delivers an encapsulated Ag to splenic marginal zone B (MZ-B) cells via the aid of a PEGylated liposome (PL) system. Splenic MZ-B cells have recently attracted interest as alternative APCs. In mice, preimmunization with empty (no Ag encapsulation) PLs triggered the efficient delivery of a subsequent dose of Ag-containing PLs, injected 3 d later, to the spleen compared with a single dose of Ag-containing PLs. In addition, immunization with empty PLs allowed three subsequent sequential injections of OVA-PLs to efficiently induce a CTL response against OVA-expressing murine thymoma (EG7-OVA) cells and resulted in in vivo growth inhibition of subsequently inoculated EG7-OVA cells. However, these sequential treatments require repeated immunizations to achieve their antitumor effect. Therefore, to improve the antitumor effect of our novel vaccine system, an adjuvant, α-galactosylceramide (αGC), was incorporated into the OVA-PLs (αGC/OVA-PLs). As expected, the incorporation of αGC reduced the required number of immunizations with OVA-PLs to the point that a single immunization treatment with empty PLs and an injection of αGC/OVA-PL efficiently triggered a potent CTL induction, resulting in a rejection of the development and a suppression of the growth of tumors that had already developed s.c. Results of this study indicate that a novel Ag delivery platform that grants efficient Ag delivery to splenic MZ-B cells shows promise as a therapeutic modality for conquering tumor growth and/or progression.


Assuntos
Antígenos de Neoplasias/administração & dosagem , Linfócitos B/imunologia , Vacinas Anticâncer/administração & dosagem , Lipossomos/imunologia , Baço/imunologia , Animais , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Citotoxicidade Imunológica/imunologia , Lipossomos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Chem Pharm Bull (Tokyo) ; 68(12): 1226-1232, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33028801

RESUMO

Proteins incorporating artificial moieties such as fluorophores and drugs have enjoyed increasing use in chemical biology and drug development research. Preparation of such artificial protein derivatives has relied mainly on native chemical ligation in which peptide/protein thioesters chemoselectively react with N-terminal cysteine (Cys) peptides to afford protein molecules. The protein thioesters derived from expressed proteins represent thioesters that are very useful for the preparation of artificial proteins by native chemical ligation with synthetic peptides with N-terminal Cys. We recently have developed a traceless thioester-producing protocol using carboxypeptidase Y (CPaseY) which is compatible with an expressed protein. The traceless character is ensured by CPaseY-mediated hydrazinolysis of C-terminal Xaa (X)-Cys-proline (Pro)-leucine (Leu)-OH sequence followed by an auto-processing of the Cys-Pro (CP) dipeptide unit, affording the corresponding X-thioester (X-SR). However, hydrazinolysis of the amide bond in the prolyl leucine junction depends significantly on the nature of X. In the case of hydrophobic X residues, the hydrazinolysis overreacts to give several hydrazides while the reaction of hydrophilic X residues proceeds slowly. In this research, we attempted to develop an X-independent CPaseY-mediated protocol and found that the incorporation of a triple CP sequence into the C-terminal end (X-(CP)3-Leu-OH) allows for efficient X-SR formation in a manner that is independent of X.


Assuntos
Catepsina A/metabolismo , Hidrazinas/química , Peptídeos/química , Proteínas/química , Amidas/química , Sequência de Aminoácidos , Cisteína/química , Leucina/química , Prolina/química , Relação Estrutura-Atividade , Compostos de Sulfidrila/química
6.
J Biol Chem ; 293(18): 6776-6790, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29545311

RESUMO

Aberrant expression of proteins often underlies many diseases, including cancer. A recently developed approach in drug development is small molecule-mediated, selective degradation of dysregulated proteins. We have devised a protein-knockdown system that utilizes chimeric molecules termed specific and nongenetic IAP-dependent protein erasers (SNIPERs) to induce ubiquitylation and proteasomal degradation of various target proteins. SNIPER(ER)-87 consists of an inhibitor of apoptosis protein (IAP) ligand LCL161 derivative that is conjugated to the estrogen receptor α (ERα) ligand 4-hydroxytamoxifen by a PEG linker, and we have previously reported that this SNIPER efficiently degrades the ERα protein. Here, we report that derivatization of the IAP ligand module yields SNIPER(ER)s with superior protein-knockdown activity. These improved SNIPER(ER)s exhibited higher binding affinities to IAPs and induced more potent degradation of ERα than does SNIPER(ER)-87. Further, they induced simultaneous degradation of cellular inhibitor of apoptosis protein 1 (cIAP1) and delayed degradation of X-linked IAP (XIAP). Notably, these reengineered SNIPER(ER)s efficiently induced apoptosis in MCF-7 human breast cancer cells that require IAPs for continued cellular survival. We found that one of these molecules, SNIPER(ER)-110, inhibits the growth of MCF-7 tumor xenografts in mice more potently than the previously characterized SNIPER(ER)-87. Mechanistic analysis revealed that our novel SNIPER(ER)s preferentially recruit XIAP, rather than cIAP1, to degrade ERα. Our results suggest that derivatized IAP ligands could facilitate further development of SNIPERs with potent protein-knockdown and cytocidal activities against cancer cells requiring IAPs for survival.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Animais , Antineoplásicos/farmacologia , Regulação para Baixo , Humanos , Ligantes , Células MCF-7 , Camundongos , Ligação Proteica , Proteólise , Tiazóis/farmacologia , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Biol Pharm Bull ; 42(6): 1019-1024, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31155576

RESUMO

Apolipoprotein A-I (apoA-I) plays a critical role in high-density lipoprotein (HDL) biogenesis, function and structural dynamics. Peptides that mimic apoA-I have a short amphipathic α-helical structure that can functionally recapitulate many of the same biologic properties of full-length apoA-I in HDL. Hence, they might be expected to have clinical applications in the reduction of atherosclerosis. However, nonspecific cellular efflux of cholesterol induced by apoA-I mimetic peptides might cause side effects that are, as yet, unidentified. In this study, we developed a photo-activatable peptide, 2F*, which is an 18 amino acid peptide mimicking apoA-I bearing an internal photocleavable caging group that is designed to assume an α-helical structure in response to a light stimulus and trigger efflux of cholesterol from cells. Without light irradiation, 2F* peptide showed a low tendency for the formation of α-helices, and therefore did not associate with lipids and failed to induce efflux of cholesterol. In addition, 2F* did not cause hemolysis under our experimental condition. Mass spectrometry indicated that, after light exposure, the caging group detached from 2F* and it assumed the α-helical structure in the presence of lipids, and enhanced cholesterol efflux from cells. Photo-activatable peptides such as 2F* that control cholesterol efflux following light stimulus may be useful for future atherosclerosis-reducing therapies.


Assuntos
Apolipoproteína A-I , Peptídeos/farmacologia , Peptídeos/efeitos da radiação , Transportador 1 de Cassete de Ligação de ATP/genética , Animais , Biomimética , Linhagem Celular , Colesterol/metabolismo , Cricetinae , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Luz , Ratos
8.
Molecules ; 24(9)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052207

RESUMO

Intracellular polysulfide could regulate the redox balance via its anti-oxidant activity. However, the existence of polysulfide in biological fluids still remains unknown. Recently, we developed a quantitative analytical method for polysulfide and discovered that polysulfide exists in plasma and responds to oxidative stress. In this study, we confirmed the presence of polysulfide in other biological fluids, such as semen and nasal discharge. The levels of polysulfide in these biological fluids from healthy volunteers (n = 9) with identical characteristics were compared. Additionally, the circadian rhythm of plasma polysulfide was also investigated. The polysulfide levels detected from nasal discharge and seminal fluid were approximately 400 and 600 µM, respectively. No correlation could be found between plasma polysulfide and the polysulfide levels of tear, saliva, and nasal discharge. On the other hand, seminal polysulfide was positively correlated with plasma polysulfide, and almost all polysulfide contained in semen was found in seminal fluid. Intriguingly, saliva and seminal polysulfide strongly correlated with salivary amylase and sperm activities, respectively. These results provide a foundation for scientific breakthroughs in various research areas like infertility and the digestive system process.


Assuntos
Amilases/metabolismo , Espermatozoides/fisiologia , Sulfetos/metabolismo , Adulto , Fatores Etários , Biomarcadores , Líquidos Corporais , Índice de Massa Corporal , Ritmo Circadiano , Feminino , Humanos , Masculino , Proteínas/metabolismo , Fatores Sexuais , Contagem de Espermatozoides , Motilidade dos Espermatozoides , Adulto Jovem
9.
J Biol Chem ; 292(11): 4556-4570, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28154167

RESUMO

Many diseases, especially cancers, result from aberrant or overexpression of pathogenic proteins. Specific inhibitors against these proteins have shown remarkable therapeutic effects, but these are limited mainly to enzymes. An alternative approach that may have utility in drug development relies on selective degradation of pathogenic proteins via small chimeric molecules linking an E3 ubiquitin ligase to the targeted protein for proteasomal degradation. To this end, we recently developed a protein knockdown system based on hybrid small molecule SNIPERs (Specific and Nongenetic IAP-dependent Protein Erasers) that recruit inhibitor of the apoptosis protein (IAP) ubiquitin ligases to specifically degrade targeted proteins. Here, we extend our previous study to show a proof of concept of the SNIPER technology in vivo By incorporating a high affinity IAP ligand, we developed a novel SNIPER against estrogen receptor α (ERα), SNIPER(ER)-87, that has a potent protein knockdown activity. The SNIPER(ER) reduced ERα levels in tumor xenografts and suppressed the growth of ERα-positive breast tumors in mice. Mechanistically, it preferentially recruits X-linked IAP (XIAP) rather than cellular IAP1, to degrade ERα via the ubiquitin-proteasome pathway. With this IAP ligand, potent SNIPERs against other pathogenic proteins, BCR-ABL, bromodomain-containing protein 4 (BRD4), and phosphodiesterase-4 (PDE4) could also be developed. These results indicate that forced ubiquitylation by SNIPERs is a useful method to achieve efficient protein knockdown with potential therapeutic activities and could also be applied to study the role of ubiquitylation in many cellular processes.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Proteólise/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/uso terapêutico , Animais , Antineoplásicos/farmacologia , Mama/efeitos dos fármacos , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Linhagem Celular Tumoral , Descoberta de Drogas , Receptor alfa de Estrogênio/antagonistas & inibidores , Feminino , Humanos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Complexo de Endopeptidases do Proteassoma/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Ubiquitinação/efeitos dos fármacos , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
10.
Mol Pharm ; 15(2): 403-409, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29287147

RESUMO

Microsynchrotron radiation X-ray fluorescence spectrometry (µ-SR-XRF) is an X-ray procedure that utilizes synchrotron radiation as an excitation source. µ-SR-XRF is a rapid, nondestructive technique that allows mapping and quantification of metals and biologically important elements in cell or tissue samples. Generally, the intratumor distribution of nanocarrier-based therapeutics is assessed by tracing the distribution of a labeled nanocarrier within tumor tissue, rather than by tracing the encapsulated drug. Instead of targeting the delivery vehicle, we employed µ-SR-XRF to visualize the intratumoral microdistribution of oxaliplatin (l-OHP) encapsulated within PEGylated liposomes. Tumor-bearing mice were intravenously injected with either l-OHP-containing PEGylated liposomes (l-OHP liposomes) or free l-OHP. The intratumor distribution of l-OHP within tumor sections was determined by detecting the fluorescence of platinum atoms, which are the main elemental components of l-OHP. The l-OHP in the liposomal formulation was localized near the tumor vessels and accumulated in tumors at concentrations greater than those seen with the free form, which is consistent with the results of our previous study that focused on fluorescent labeling of PEGylated liposomes. In addition, repeated administration of l-OHP liposomes substantially enhanced the tumor accumulation and/or intratumor distribution of a subsequent dose of l-OHP liposomes, presumably via improvements in tumor vascular permeability, which is also consistent with our previous results. In conclusion, µ-SR-XRF imaging efficiently and directly traced the intratumor distribution of the active pharmaceutical ingredient l-OHP encapsulated in liposomes within tumor tissue. µ-SR-XRF imaging could be a powerful means for estimating tissue distribution and even predicting the pharmacological effect of nanocarrier-based anticancer metal compounds.


Assuntos
Antineoplásicos/farmacocinética , Imagem Molecular/métodos , Neoplasias/diagnóstico por imagem , Oxaliplatina/farmacocinética , Espectrometria por Raios X/métodos , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Estudos de Viabilidade , Humanos , Lipossomos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Neoplasias/tratamento farmacológico , Oxaliplatina/administração & dosagem , Polietilenoglicóis/química , Distribuição Tecidual
11.
Pharm Res ; 35(11): 223, 2018 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-30280273

RESUMO

PURPOSE: Immunogenicity of PEGylated proteins and nanomedicines represents a potential impediment against their development and use in clinical settings. The purpose of this study is to develop a method for detecting anti-PEG immunity of PEGylated proteins and/or nanomedicines using flow cytometry. METHODS: The binding of fluorescence-labeled mPEG-modified liposomes to HIK-G11 cells, PEG-specific hybridoma cells, or spleen cells was evaluated by flow cytometry for detecting immunogenicity of PEGylated therapeutics. RESULTS: The fluorescence-labeled methoxy PEG (mPEG)-modified liposomes were efficiently bound to HIK-G11 cells. Such staining with fluorescence-labeled mPEG-modified liposomes was significantly inhibited in the presence of either non-labeled mPEG-modified liposomes or mPEG-modified ovalbumin (OVA) but not polyglycerol-modified liposomes. In addition, we found that mPEG-modified liposomes, highly immunogenic, caused proliferation of PEG-specific cells, while hydroxyl PEG-modified liposomes, less immunogenic, scarcely caused. Furthermore, after intravenous injection of mPEG-modified liposomes, the percentage of PEG-specific cells in the splenocytes, as determined by flow cytometry, corresponded well with the production level of anti-PEG antibodies, as determined by ELISA. CONCLUSIONS: PEG-specific B cell assay we introduced may become a useful method to detect an anti-PEG immune response against PEGylated therapeutics and clarify the mechanism for anti-PEG immune responses.


Assuntos
Lipossomos/imunologia , Ovalbumina/imunologia , Polietilenoglicóis/química , Animais , Formação de Anticorpos , Linfócitos B/citologia , Linfócitos B/imunologia , Linhagem Celular , Citometria de Fluxo , Glicerol/química , Humanos , Hibridomas , Imunoglobulina M/sangue , Lipossomos/química , Masculino , Camundongos Endogâmicos BALB C , Ovalbumina/química , Tamanho da Partícula , Plasmócitos/imunologia , Plasmócitos/metabolismo , Polietilenoglicóis/toxicidade , Polímeros/química , Baço/citologia , Baço/imunologia
12.
Biol Pharm Bull ; 41(7): 1078-1083, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29962402

RESUMO

Modulation of tumor immunity is a known factor in the antitumor activity of many chemotherapeutic agents. Exosomes are extracellular nanometric vesicles that are released by almost all types of cells, which includes cancer cells. These vesicles play a crucial role in tumor immunity. Many in vitro studies have reproduced the aggressive secretion of exosomes following treatment with conventional anticancer drugs. Nevertheless, how chemotherapeutic agents including nanomedicines such as Doxil® affect the in vivo secretion of exosomes is yet to be elucidated. In this study, the effect of intravenous injection of either free doxorubicin (DXR) or liposomal DXR formulation (Doxil®) on exosome secretion was evaluated in BALB/c mice. Exosomes were isolated from serum by using an ExoQuick™ kit. Free DXR treatment markedly increased serum exosome levels in a post-injection time-dependent manner, while Doxil® treatment did not. Exosomal size distribution and marker protein expressions (CD9, CD63, and TSG101) were studied. The physical/biological characteristics of treatment-induced exosomes were comparable to those of control mice. Interestingly, splenectomy significantly suppressed the copious exosomal secretions induced by free DXR. Collectively, our results indicate that conventional anticancer agents induce the secretion of circulating exosomes, presumably via stimulating immune cells of the spleen. As far as we know, this study represents the first report indicating that conventional chemotherapeutics may induce exosome secretion which might, in turn, contribute partly to the antitumor effect of chemotherapeutic agents.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/análogos & derivados , Exocitose/efeitos dos fármacos , Exossomos/metabolismo , Animais , Doxorrubicina/farmacologia , Exossomos/efeitos dos fármacos , Injeções Intravenosas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Polietilenoglicóis/farmacologia , Baço/citologia , Baço/efeitos dos fármacos , Baço/metabolismo
13.
Biol Pharm Bull ; 41(5): 733-742, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29709910

RESUMO

Exosomes are tiny extracellular vesicles that are usually harvested in small quantities. Such small yield has been an obstacle for the expansion of the basic research regarding exosome analysis and applications in drug delivery. To increase exosome yield, we attempted to stimulate tumor cells via the addition of liposomes in vitro. Neutral, cationic-bare or PEGylated liposomes were incubated with four different tumor cell lines. The stimulatory effect of liposomal formulations on exosome secretion and cellular uptake propensity of the collected exosome by mother cells or different cells was evaluated. Both neutral and cationic-bare liposomes enhanced exosome secretion in a dose-dependent manner. Fluid cationic liposomes provided the strongest stimulation. Surprisingly, the PEGylation of bare liposomes diminished exosome secretion. Exosomes harvested in the presence of fluid cationic liposomes showed increased cellular uptake, but solid cationic liposomes did not. Our findings indicate that the physicochemical properties of liposomes determine whether they will act as a stimulant or as a depressant on exosome secretion from tumor cells. Liposomal stimulation may be a useful strategy to increase exosome yield, although further preparation to increase the purity of exosomes may be needed. In addition, fine-tuning of the biological properties of induced exosomes could be achieved via controlling the physicochemical properties of the stimulant liposomes.


Assuntos
Exossomos/efeitos dos fármacos , Lipossomos/farmacologia , Animais , Linhagem Celular Tumoral , Humanos , Camundongos
14.
Mol Pharmacol ; 91(3): 159-166, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27965304

RESUMO

Development of novel small molecules that selectively degrade pathogenic proteins would provide an important advance in targeted therapy. Recently, we have devised a series of hybrid small molecules named SNIPER (specific and nongenetic IAP-dependent protein ERaser) that induces the degradation of target proteins via the ubiquitin-proteasome system. To understand the localization of proteins that can be targeted by this protein knockdown technology, we examined whether SNIPER molecules are able to induce degradation of cellular retinoic acid binding protein II (CRABP-II) proteins localized in subcellular compartments of cells. CRABP-II is genetically fused with subcellular localization signals, and they are expressed in the cells. SNIPER(CRABP) with different IAP-ligands, SNIPER(CRABP)-4 with bestatin and SNIPER(CRABP)-11 with MV1 compound, induce the proteasomal degradation of wild-type (WT), cytosolic, nuclear, and membrane-localized CRABP-II proteins, whereas only SNIPER(CRABP)-11 displayed degradation activity toward the mitochondrial CRABP-II protein. The small interfering RNA-mediated silencing of cIAP1 expression attenuated the knockdown activity of SNIPER(CRABP) against WT and cytosolic CRABP-II proteins, indicating that cIAP1 is the E3 ligase responsible for degradation of these proteins. Against membrane-localized CRABP-II protein, cIAP1 is also a primary E3 ligase in the cells, but another E3 ligase distinct from cIAP2 and X-linked inhibitor of apoptosis protein (XIAP) could also be involved in the SNIPER(CRABP)-11-induced degradation. However, for the degradation of nuclear and mitochondrial CRABP-II proteins, E3 ligases other than cIAP1, cIAP2, and XIAP play a role in the SNIPER-mediated protein knockdown. These results indicate that SNIPER can target cytosolic, nuclear, membrane-localized, and mitochondrial proteins for degradation, but the responsible E3 ligase is different, depending on the localization of the target protein.


Assuntos
Proteínas/metabolismo , Proteólise , Bibliotecas de Moléculas Pequenas/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Humanos , Proteínas Mitocondriais/metabolismo , Organelas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores do Ácido Retinoico/metabolismo , Frações Subcelulares/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X
15.
J Biol Chem ; 290(34): 20947-20959, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26175149

RESUMO

The N-terminal amino acid 1-83 fragment of apolipoprotein A-I (apoA-I) has a strong propensity to form amyloid fibrils at physiological neutral pH. Because apoA-I has an ability to bind to lipid membranes, we examined the effects of the lipid environment on fibril-forming properties of the N-terminal fragment of apoA-I variants. Thioflavin T fluorescence assay as well as fluorescence and transmission microscopies revealed that upon lipid binding, fibril formation by apoA-I 1-83 is strongly inhibited, whereas the G26R mutant still retains the ability to form fibrils. Such distinct effects of lipid binding on fibril formation were also observed for the amyloidogenic prone region-containing peptides, apoA-I 8-33 and 8-33/G26R. This amyloidogenic region shifts from random coil to α-helical structure upon lipid binding. The G26R mutation appears to prevent this helix transition because lower helical propensity and more solvent-exposed conformation of the G26R variant upon lipid binding were observed in the apoA-I 1-83 fragment and 8-33 peptide. With a partially α-helical conformation induced by the presence of 2,2,2-trifluoroethanol, fibril formation by apoA-I 1-83 was strongly inhibited, whereas the G26R variant can form amyloid fibrils. These findings suggest a new possible pathway for amyloid fibril formation by the N-terminal fragment of apoA-I variants: the amyloidogenic mutations partially destabilize the α-helical structure formed upon association with lipid membranes, resulting in physiologically relevant conformations that allow fibril formation.


Assuntos
Apolipoproteína A-I/química , Mutação , Fosfatidilcolinas/química , Proteínas Recombinantes de Fusão/química , Amiloide/química , Amiloide/genética , Apolipoproteína A-I/genética , Benzotiazóis , Escherichia coli/genética , Escherichia coli/metabolismo , Corantes Fluorescentes , Expressão Gênica , Humanos , Ligação Proteica , Engenharia de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Relação Estrutura-Atividade , Tiazóis , Trifluoretanol/química , Lipossomas Unilamelares/química
16.
Bioorg Med Chem Lett ; 26(11): 2655-8, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27086122

RESUMO

A peptide-based protein knockdown system for inducing nuclear receptors degradation via the ubiquitin-proteasome system was developed. Specifically, the designed molecules were composed of two biologically active scaffolds: a peptide that binds to the estrogen receptor α (ERα) surface and an MV1 molecule that binds to cellular inhibitors of apoptosis proteins (IAP: cIAP1/cIAP2/XIAP) to induce ubiquitylation of the ERα. The hybrid peptides induced IAP-mediated ubiquitylation followed by proteasomal degradation of the ERα. Those peptides were also applicable for inducing androgen receptor (AR) degradation.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Peptídeos/farmacologia , Humanos , Modelos Moleculares , Estrutura Molecular , Peptídeos/química , Relação Estrutura-Atividade
17.
J Pept Sci ; 22(2): 116-22, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26780967

RESUMO

Nanodiscs are composed of scaffold protein or peptide such as apolipoprotein A-I (apoA-I) and phospholipids. Although peptide-based nanodiscs have an advantage to modulate the size of nanodiscs by changing phospholipid/peptide ratios, they are usually less stable than apoA-I-based nanodiscs. In this study, we designed a novel nanodisc scaffold peptide (NSP) that has proline-punctuated bihelical amphipathic structure based on apoA-I mimetic peptides. NSP formed α-helical structure on 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) nanodiscs prepared by cholate dialysis method. Dynamic light scattering measurements demonstrated that diameters of NSP nanodiscs vary depending upon POPC/NSP ratios. Comparison of thermal unfolding of nanodiscs monitored by circular dichroism measurements demonstrated that NSP forms much more stable nanodiscs with POPC than monohelical peptide, 4F, exhibiting comparable stability to apoA-I-POPC nanodiscs. Intrinsic Trp fluorescence measurements showed that Trp residues of NSP exhibit more hydrophobic environment than that of 4 F on nanodiscs, suggesting the stronger interaction of NSP with phospholipids. Thus, the bihelical structure of NSP appears to increase the stability of nanodiscs because of the enhanced interaction of peptides with phospholipids. In addition, NSP as well as 4F spontaneously solubilized POPC vesicles into nanodiscs without using detergent. These results indicate that bihelical NSP forms nanodiscs with comparable stability to apoA-I and has an ability to control the size of nanodiscs simply by changing phospholipid/peptide ratios.


Assuntos
Apolipoproteína A-I/química , Nanoestruturas/química , Sequência de Aminoácidos , Ácido Cólico/química , Difusão Dinâmica da Luz , Humanos , Mimetismo Molecular , Dados de Sequência Molecular , Tamanho da Partícula , Fragmentos de Peptídeos/química , Fosfatidilcolinas/química , Estabilidade Proteica , Estrutura Secundária de Proteína
18.
Biochemistry ; 54(4): 1123-31, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25564321

RESUMO

It is thought that apolipoprotein A-I (apoA-I) spontaneously exchanges between high-density lipoprotein (HDL)-bound and lipid-free states, which is relevant to the occurrence of preß-HDL particles in plasma. To improve our understanding of the mechanistic basis for this phenomenon, we performed kinetic and thermodynamic analyses for apoA-I exchange between discoidal HDL-bound and lipid-free forms using fluorescence-labeled apoA-I variants. Gel filtration experiments demonstrated that addition of excess lipid-free apoA-I to discoidal HDL particles promotes exchange of apoA-I between HDL-associated and lipid-free pools without alteration of the steady-state HDL particle size. Kinetic analysis of time-dependent changes in NBD fluorescence upon the transition of NBD-labeled apoA-I from HDL-bound to lipid-free state indicates that the exchange kinetics are independent of the collision frequency between HDL-bound and lipid-free apoA-I, in which the lipid binding ability of apoA-I affects the rate of association of lipid-free apoA-I with the HDL particles and not the rate of dissociation of HDL-bound apoA-I. Thus, C-terminal truncations or mutations that reduce the lipid binding affinity of apoA-I strongly impair the transition of lipid-free apoA-I to the HDL-bound state. Thermodynamic analysis of the exchange kinetics demonstrated that the apoA-I exchange process is enthalpically unfavorable but entropically favorable. These results explain the thermodynamic basis of the spontaneous exchange reaction of apoA-I associated with HDL particles. The altered exchangeability of dysfunctional apoA-I would affect HDL particle rearrangement, leading to perturbed HDL metabolism.


Assuntos
Apolipoproteína A-I/metabolismo , Lipoproteínas HDL/metabolismo , Termodinâmica , Apolipoproteína A-I/farmacocinética , Cinética , Lipoproteínas HDL/farmacocinética , Ligação Proteica/fisiologia , Engenharia de Proteínas/métodos
19.
Biochim Biophys Acta ; 1841(12): 1716-24, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25281910

RESUMO

Human apolipoprotein E (apoE) isoforms exhibit different conformational stabilities and lipid-binding properties that give rise to altered cholesterol metabolism among the isoforms. Using Trp-substituted mutations and site- directed fluorescence labeling, we made a comprehensive comparison of the conformational organization of the N- and C-terminal domains and lipid interactions between the apoE3 and apoE4 isoforms. Trp fluorescence measurements for selectively Trp-substituted variants of apoE isoforms demonstrated that apoE4 adopts less stable conformations in both the N- and C-terminal domains compared to apoE3. Consistent with this, the conformational reorganization of the N-terminal helix bundle occurs at lower guanidine hydrochloride concentration in apoE4 than in apoE3 as monitored by fluorescence resonance energy transfer (FRET) from Trp residues to acrylodan attached at the N-terminal helix. Upon binding of apoE3 and apoE4 variants to egg phosphatidylcholine small unilamellar vesicles, similar changes in Trp fluorescence or FRET efficiency were observed for the isoforms, indi- cating that the opening of the N-terminal helix bundle occurs similarly in apoE3 and apoE4. Introduction of mutations into the C-terminal domain of the apoE isoforms to prevent self-association and maintain the monomeric state resulted in great increase in the rate of binding of the C-terminal helices to a lipid surface. Overall, our results demonstrate that the different conformational organizations of the N- and C-terminal domains have a minor effect on the steady-state lipid-binding behavior of apoE3 and apoE4: rather, self-association property is a critical determinant in the kinetics of lipid binding through the C-terminal helices of apoE isoforms.


Assuntos
Apolipoproteína E3/química , Apolipoproteína E3/metabolismo , Apolipoproteína E4/química , Apolipoproteína E4/metabolismo , Lipídeos/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/metabolismo , Animais , Galinhas , Transferência Ressonante de Energia de Fluorescência , Guanidina/farmacologia , Humanos , Cinética , Fosfatidilcolinas/metabolismo , Desnaturação Proteica/efeitos dos fármacos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Estrutura Terciária de Proteína , Pirenos/metabolismo , Fatores de Tempo , Triptofano/metabolismo , Lipossomas Unilamelares/metabolismo
20.
Bioorg Med Chem ; 23(15): 4132-4138, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26183544

RESUMO

Three types of stabilized helical peptides containing disulfide bonds, C-C cross-linked side chains, or α,α-disubstituted amino acids (2-aminoisobutyric acid (Aib)) were designed and synthesized as inhibitors of estrogen receptor (ER)-coactivator interactions. Furthermore, heptaarginine (R7)-conjugated versions of the peptides were prepared, and their effects on ER-mediated transcription were evaluated at the cellular level (in ER-positive T47D cells). Among them, the R7-conjugated peptides 11 and 12 downregulated the mRNA expression of pS2 (an ER-mediated gene whose expression is upregulated by 17ß-estradiol) by 95% (at a dose of 10 µM) and 87% (at a dose of 3 µM), respectively.


Assuntos
Peptídeos/química , Peptídeos/farmacologia , Receptores de Estrogênio/antagonistas & inibidores , Ácidos Aminoisobutíricos/química , Arginina/química , Dicroísmo Circular , Avaliação Pré-Clínica de Medicamentos/métodos , Estradiol/farmacologia , Humanos , Peptídeos/síntese química , Presenilina-2/genética , Conformação Proteica , Mapas de Interação de Proteínas , Estabilidade Proteica , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Técnicas de Síntese em Fase Sólida , Relação Estrutura-Atividade , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA