Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(6): 585, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809286

RESUMO

The Niger Delta in Nigeria is a complex and heavily contaminated area with over 150,000 interconnected contaminated sites. This intricate issue is compounded by the region's strong hydrological processes and high-energy environment, necessitating a science-based approach for effective contamination assessment and management. This study introduces the concept of sub-catchment contamination assessment and management, providing an overarching perspective rather than addressing each site individually. A description of the sub-catchment delineation process using the digital elevation model data from an impacted area within the Delta is provided. Additionally, the contamination status from the delineated sub-catchment is reported. Sediment, surface water and groundwater samples from the sub-catchment were analyzed for total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs), respectively. Surface sediment TPH concentrations ranged from 129 to 20,600 mg/kg, with subsurface (2-m depth) concentrations from 15.5 to 729 mg/kg. PAHs in surface and subsurface sediment reached 9.55 mg/kg and 0.46 mg/kg, respectively. Surface water exhibited TPH concentrations from 10 to 620 mg/L, while PAHs ranged from below detection limits to 1 mg/L. Groundwater TPH concentrations spanned 3 to 473 mg/L, with total PAHs varying from below detection limits to 0.28 mg/L. These elevated TPH and PAH levels indicate extensive petroleum contamination in the investigated sediment and water environment. Along with severe impacts on large areas of mangroves and wetlands, comparison of TPH and PAH concentrations with sediment and water quality criteria found 54 to 100% of stations demonstrated exceedances, suggesting adverse biological effects on aquatic and sediment biota are likely occurring.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Água Subterrânea , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Nigéria , Poluentes Químicos da Água/análise , Poluição por Petróleo/análise , Sedimentos Geológicos/química , Água Subterrânea/química
2.
Environ Monit Assess ; 195(2): 312, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36658416

RESUMO

This study answered the question of whether mine spoils occurring in a common geological location had similarities in their contaminant load and associated health risks. Using inductively coupled plasma mass spectrometry, the total contents of Cd, Pb, As, Hg, Zn, Fe, and Al were determined for 110 digested soil samples obtained from underground rock ore (URS), oxide ore (OXS), and alluvial ore (AVS) mine spoils. Independent sample Kruskal-Wallis test and pairwise comparisons of sources were used to ascertain the variation in elemental load between the mine spoil investigated. The results showed that mine spoil contaminations and their ecological and health risk significantly varied (p < 0.01) from each other and fell in the order OXS > URS > AVS > forest soils because of their geochemistry. Determined enrichment and geo-accumulation indices revealed that OXS and URS sites were severely-extremely polluted with Cd, Hg, and As, while AVS mine spoils were only moderately contaminated by Cd and As contents. Children had the highest tendency for developing noncarcinogenic health defects largely due to toxic contents of As, Cd, and Hg in soil materials near them than adult men and women would after obtaining a hazard index of 73.5 and 67.7 (unitless) at both OXS and URS sites. Mine spoils especially where hard rocks and oxide ores were processed are not fit for agricultural use or human habitation. The restriction of human access and sustainable remediation approaches are required to avert health defects. Even so, area-specific potentially toxic elements must be targeted during soil cleaning due to the significant variations in contaminant load between mined sites.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Criança , Humanos , Feminino , Ouro/análise , Cádmio/análise , Monitoramento Ambiental/métodos , Mercúrio/análise , Solo/química , Poluentes do Solo/análise , Metais Pesados/análise , Medição de Risco
3.
Environ Monit Assess ; 195(6): 793, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261537

RESUMO

This study evaluated the effects of neem seed biochar, poultry manure, and their combinations at varying rates of 15 and 25% (w/w) on potentially toxic elements (PTEs) in soils. Afterward, the suitability of Manihot esculenta and Jatropha curcas in removing Cd, As, Zn, Pb, and Hg from mine spoils were appraised in a 270-day outdoor pot experiment. Using ICP-Mass Spectrometry, the elemental contents of target PTE in the shoot, root, and soil specimens were determined for each treatment. The obtained average values were further subjected to a nonparametric test of samples using IBM SPSS Statistic 29. The applied organic amendments resulted in significant differences p < 0.05 in PTE availability for plant uptake after the Independent-Samples Kruskal-Wallis Test was made. Nonetheless, applying a 25% (w/w) mixture of neem seed biochar and poultry manure was efficient in immobilizing more PTEs in soils which caused lower PTEs presence in plants. Organic amendments further significantly enhanced the fertility of the mine soils leading to about a 6- 25.00% increase in the biomass yield (p < 0.05) of both plants. No significant difference (p > 0.05) was however observed between the phytoremediation potentials of both plants after the Independent-Sample Mann-Whitney U test. Even that, Manihot esculenta was averagely more efficient in PTE uptake than Jatropha curcas. Larger portions of the bioaccumulated PTEs were stored in the roots of both plants leading to high bioconcentration factors of 1.94- 2.47 mg/kg and 1.27- 4.70 mg/kg, respectively, for Jatropha curcas and Manihot esculenta. A transfer factor < 1 was achieved for all PTEs uptake by both plants and indicated their suitability for phytostabilization. Techniques for easy cultivation of root-storing PTEs are required to enhance their large-scale use as their biomass could further be used in clean energy production.


Assuntos
Jatropha , Manihot , Metais Pesados , Poluentes do Solo , Animais , Biodegradação Ambiental , Metais Pesados/análise , Esterco/análise , Poluentes do Solo/análise , Solo/química , Aves Domésticas , Monitoramento Ambiental , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA