Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 411(10): 2057-2069, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30734083

RESUMO

Ecotoxicological screening of surface waters can involve multiple analyses using multiple bioassay and chemical analytical methods that require enriched samples to reach low concentrations. Such broad screening of the same sample necessitates sufficient sample volume-typically several liters-to produce a sufficient amount of enriched sample. Often, this is achieved by performing parallel solid-phase extractions (SPE) where extracts are combined into a pool-this is a laborious process. In this study, we first validated our existing SPE method for the chemical recovery of an extended set of compounds. We spiked four estrogenic compounds and 11 herbicides to samples from independent rivers (1 L) and wastewater treatment plant effluents (0.5 L). Then, we investigated the effect of increased sample loading of the SPE cartridges on both chemical and biological recoveries by comparing the validated volumes with four times larger sample volumes (i.e., 4 L river water and 2 L effluent). Samples were analyzed by LC-MS/MS and three bioassays: an estrogen receptor transactivation assay (ERα-CALUX), the combined algae test, and a bacterial bioluminescence inhibition assay. Our existing SPE method was found to be suitable for enriching the extended set of estrogens and herbicides in river water and effluents with near to perfect chemical recoveries (~ 100%), except for the herbicide metribuzin (46 ± 19%). In the large volume river and effluent samples, the biological activities and concentrations of the spiked compounds were between 87 and 104% of those measured with the lower sample loading, which is adequate. In addition, the ratio between the large and original volume SPE method for the non-target endpoint (bacterial bioluminescence inhibition) was acceptable (on average 82 ± 9%). Results indicate that our current water extraction method can be applied to up to four times larger sample volumes, resulting in four times more extract volumes, without significant reductions in recoveries for the tested estrogens and herbicides. Graphical abstract ᅟ.


Assuntos
Monitoramento Ambiental/métodos , Estrogênios/isolamento & purificação , Herbicidas/isolamento & purificação , Extração em Fase Sólida/métodos , Poluentes Químicos da Água/isolamento & purificação , Bactérias/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Cromatografia Líquida/métodos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Estrogênios/toxicidade , Herbicidas/toxicidade , Rios/química , Espectrometria de Massas em Tandem/métodos , Testes de Toxicidade/métodos , Águas Residuárias/análise , Poluentes Químicos da Água/toxicidade
2.
Environ Toxicol Chem ; 41(10): 2512-2526, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35876436

RESUMO

Estrogens are released to the aquatic environment by wastewater treatment plant (WWTP) effluents and can affect wildlife. In the last three decades, many in vitro assay platforms have been developed to detect and quantify estrogenicity in water. In 2018, the International Organization for Standardization (ISO) standardized protocols became available for three types of in vitro estrogen receptor transactivation assays (ERTAs) detecting estrogenicity in 96-well plates (ISO19040 1-3). Two ERTAs-lyticase Yeast Estrogen Screen (L-YES) and Arxula YES (A-YES)-use genetically modified yeast strains, whereas the third utilizes stably transfected human cells. One human cell based assay is ERα-CALUX, which is based on a genetically modified human bone osteosarcoma cell line. In the present study, we characterized the performance, comparability, and effectiveness of these three ERTAs, including an evaluation involving proposed water quality thresholds (effect-based trigger values [EBTs]). For a robust evaluation, we collected 52 effluent samples over three sampling campaigns at 15 different WWTPs in Switzerland. Estrogen receptor transactivation assay results were correlated and compared with results from chemical analysis targeting known estrogens. The three ERTAs showed comparable data over all campaigns. However, the selection of EBTs plays a significant role in the interpretation and comparison of bioassay results to distinguish between acceptable and unacceptable water quality. Applying a fixed cross-assay EBT for effluent of 4 ng L-1 resulted in varying numbers of threshold exceedances ranging between zero and four samples depending on the ERTA used. Using assay-specific EBTs showed exceedances in eight samples (ERα-CALUX) and in one sample (A-YES), respectively. Thus, proposed EBTs do not produce similar risk profiles across samples and further refinement of assay-specific EBTs is needed to account for assay-specific differences and to enable the application of ERTAs as effect-based methods in environmental monitoring. Environ Toxicol Chem 2022;41:2512-2526. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Receptor alfa de Estrogênio , Poluentes Químicos da Água , Bioensaio/métodos , Monitoramento Ambiental/métodos , Estradiol/análise , Receptor alfa de Estrogênio/metabolismo , Estrogênios/análise , Estrogênios/toxicidade , Estrona/análise , Humanos , Receptores de Estrogênio/metabolismo , Padrões de Referência , Saccharomyces cerevisiae/metabolismo , Ativação Transcricional , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
3.
Environ Int ; 159: 107033, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34979407

RESUMO

Three steroidal estrogens, 17α-ethinylestradiol (EE2), 17ß-estradiol (E2), estrone (E1), and the non-steroidal anti-inflammatory drug (NSAID), diclofenac have been included in the first Watch List of the Water Framework Directive (WFD, EU Directive 2000/60/EC, EU Implementing Decision 2015/495). This triggered the need for more EU-wide surface water monitoring data on these micropollutants, before they can be considered for inclusion in the list of priority substances regularly monitored in aquatic ecosystems. The revision of the priority substance list of the WFD offers the opportunity to incorporate more holistic bioanalytical approaches, such as effect-based monitoring, alongside single substance chemical monitoring. Effect-based methods (EBMs) are able to measure total biological activities (e.g., estrogenic activity or cyxlooxygenase [COX]-inhibition) of specific group of substances (such as estrogens and NSAIDs) in the aquatic environment at low concentrations (pg/L). This makes them potential tools for a cost-effective and ecotoxicologically comprehensive water quality assessment. In parallel, the use of such methods could build a bridge from chemical status assessments towards ecological status assessments by adressing mixture effects for relevant modes of action. Our study aimed to assess the suitability of implementing EBMs in the WFD, by conducting a large-scale sampling and analysis campaign of more than 70 surface waters across Europe. This resulted in the generation of high-quality chemical and effect-based monitoring data for the selected Watch List substances. Overall, water samples contained low estrogenicity (0.01-1.3 ng E2-Equivalent/L) and a range of COX-inhibition activity similar to previously reported levels (12-1600 ng Diclofenac-Equivalent/L). Comparison between effect-based and conventional analytical chemical methods showed that the chemical analytical approach for steroidal estrogens resulted in more (76%) non-quantifiable data, i.e., concentrations were below detection limits, compared to the EBMs (28%). These results demonstrate the excellent and sensitive screening capability of EBMs.


Assuntos
Diclofenaco , Poluentes Químicos da Água , Diclofenaco/toxicidade , Ecossistema , Monitoramento Ambiental/métodos , Estradiol/análise , Estrogênios/análise , Poluentes Químicos da Água/análise
4.
Chemosphere ; 66(10): 2011-8, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16959292

RESUMO

The marine halogenated natural product 2,3,3',4,4',5,5'-heptachloro-1'-methyl-1,2'-bipyrrole (Q1) is widely distributed in the environment. In this study, we screened samples which have previously been found to contain remarkably high residues of Q1 (blubber of marine mammals from Australia, samples from Antarctica, human milk from the Faroe Island) for the additional presence of mixed chlorinated and brominated congeners. Using GC/ECNI-MS, all samples tested were positive and many contained four out of five possible bromohexachloro congeners (BrCl6-MBPs), five out of 14 possible dibromopentachloro congeners (Br2Cl5-MBPs), five of 21 possible tribromotetrachloro-congeners (Br3Cl4-MBPs), as well as several higher brominated congeners. About 20 heptahalo congeners of Q1 are described for the first time in the scientific literature. Isomers eluted within about one minute, respectively. Hence it is possible, that the peak clusters identified may be composed of more, co-eluting congeners. Similarities in the GC/ECNI-MS mass spectra with polychlorinated biphenyls (PCBs) were addressed. We also suggest an acronym system similar to that in use for polychlorinated biphenyls that may simplify the use of this substance class in scientific papers. In the samples from Australia, BrCl6-MBPs and Br2Cl5-MBPs amounted for 7-27.5% and 0.4-4.2% of Q1, respectively whereas Br3Cl4-MBPs and higher brominated MBPs were found in the range of <1% of Q1 or less.


Assuntos
Hidrocarbonetos Bromados/análise , Hidrocarbonetos Clorados/análise , Pirróis/análise , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Bromados/química , Hidrocarbonetos Clorados/química , Estrutura Molecular , Pirróis/química , Água do Mar/química , Poluentes Químicos da Água/análise
5.
Mar Pollut Bull ; 62(11): 2463-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21925687

RESUMO

Halogenated natural products (HNPs) are frequently detected in marine organisms. High HNP concentrations have previously been found in marine mammals from the Great Barrier Reef, Australia, including in the blubber of herbivorous dugongs (Dugong dugon). To identify the source of HNPs we initially focused on the analysis of Australian seagrass (Halophila ovalis) which serves as the principal food source for dugongs. GC/MS analysis of the seagrass indicated the presence of several organobromine compounds. One compound was identified as 2,3,4,5-tetrabromo-1-methylpyrrole (TBMP) by synthesis. Subsequent analysis of semipermeable membrane devices demonstrated that the photo-sensitive TBMP is widespread in the Great Barrier Reef (Queensland, Australia). The detection of larger TBMP concentrations in fish fillets from Chile and traces in mussels from New Zealand indicated that this potential HNP may be distributed throughout the Southern Pacific Ocean.


Assuntos
Bivalves/química , Monitoramento Ambiental/estatística & dados numéricos , Hidrocarbonetos Bromados/análise , Hydrocharitaceae/química , Salmo salar/metabolismo , Plantas Tolerantes a Sal/química , Animais , Chile , Recifes de Corais , Cromatografia Gasosa-Espectrometria de Massas , Nova Zelândia , Oceano Pacífico , Queensland
6.
Environ Sci Technol ; 39(20): 7784-9, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16295837

RESUMO

Some methoxylated polybrominated diphenyl ethers (MeO-BDEs) are known halogenated natural products (HNPs) and are frequently detected in higher organisms of the marine environment. In this study we demonstrate that a prominent MeO-BDE, previously detected in marine mammals from Australia, is identical to 3,5-dibromo-2-(2',4'dibromo)phenoxyanisole (BC-3, 6-MeO-BDE 47). Up to 1.9 mg/ kg of 6-MeO-BDE 47 was present in cetaceans from Australia, 0.2-0.3 mg/kg in two crocodile eggs from Australia, but concentrations of 1 or 2 orders of magnitude lower were found in shark liver oil from NewZealand and in marine mammals from Africa and the Antarctic. Concentrations of 6-MeO-BDE 47 in samples from Australia were in the same range as anthropogenic pollutants such as PCB 153 and p,p'-DDE. Along with 6-MeO-BDE 47 and the known HNP 4,6-dibromo-2-(2',4'-dibromo)phenoxyanisole (BC-2, 2'-MeO-BDE 68), several tribromophenoxyanisoles (MeO-triBDE) were present in tissue of Australian cetaceans. To determine their structure, abiotic debromination experiments were performed using 6-MeO-BDE 47 and 2'-MeO-BDE 68 and superreduced dicyanocobalamine. These experiments resulted in formation of eight MeO-triBDEs, all of which were detected in the cetacean samples. Five of these eight MeO-triBDEs could be identified based on two standard compounds as well as gas chromatographic and mass spectrometric features. It was also shown that the first eluting isomer (compound 1), 6-MeO-BDE 17 (compound 2), and 2-MeO-BDE 39 (compound 5) were the most prominent MeO-triBDEs in the Australian cetacean samples. The concentrations of the MeO-triBDEs in two cetacean samples were 0.20 and 0.36 mg/kg, respectively. Although the reductive debromination with dicyanocobalamine resulted in a different congener pattern than was found in the marine mammals, it could not be excluded that the tribromo


Assuntos
Anisóis/análise , Cetáceos/metabolismo , Monitoramento Ambiental/estatística & dados numéricos , Fígado/química , Éteres Fenílicos/análise , Jacarés e Crocodilos/metabolismo , Animais , Anisóis/química , Cromatografia em Gel , Cromatografia Gasosa-Espectrometria de Massas , Oceania , Óvulo/química , Éteres Fenílicos/química , Tubarões/metabolismo , Vitamina B 12
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA