Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genet Sel Evol ; 51(1): 60, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664893

RESUMO

BACKGROUND: The pig breeding industry has undergone a large number of mergers in the past decades. Various commercial lines were merged or discontinued, which is expected to reduce the genetic diversity of the pig species. The objective of the current study was to investigate the genetic diversity of different former Dutch Landrace breeding lines and quantify their relationship with the current Dutch Landrace breed that originated from these lines. RESULTS: Principal component analysis clearly divided the former Landrace lines into two main clusters, which are represented by Norwegian/Finnish Landrace lines and Dutch Landrace lines. Structure analysis revealed that each of the lines that are present in the Dutch Gene bank has a unique genetic identity. The current Dutch Landrace breed shows a high level of admixture and is closely related to the six former lines. The Dumeco N-line, which is conserved in the Dutch Gene bank, is poorly represented in the current Dutch Landrace. All seven lines (the six former and the current line) contribute almost equally to the genetic diversity of the Dutch Landrace breed. As expected, the current Dutch Landrace breed comprises only a small proportion of unique genetic diversity that was not present in the other lines. The genetic diversity level, as measured by Eding's core set method, was equal to 0.89 for the current Dutch Landrace breed, whereas total genetic diversity across the seven lines, measured by the same method, was equal to 0.99. CONCLUSIONS: The current Dutch Landrace breed shows a high level of admixture and is closely related to the six former Dutch Landrace lines. Merging of commercial Landrace lines has reduced the genetic diversity of the Landrace population in the Netherlands, although a large proportion of the original variation is maintained. Thus, our recommendation is to conserve breeding lines in a gene bank before they are merged.


Assuntos
Cruzamento/métodos , Polimorfismo Genético , Carne de Porco/normas , Suínos/genética , Animais , Carne de Porco/economia , Característica Quantitativa Herdável
2.
Nature ; 482(7383): 81-4, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22297974

RESUMO

Colour sidedness is a dominantly inherited phenotype of cattle characterized by the polarization of pigmented sectors on the flanks, snout and ear tips. It is also referred to as 'lineback' or 'witrik' (which means white back), as colour-sided animals typically display a white band along their spine. Colour sidedness is documented at least since the Middle Ages and is presently segregating in several cattle breeds around the globe, including in Belgian blue and brown Swiss. Here we report that colour sidedness is determined by a first allele on chromosome 29 (Cs(29)), which results from the translocation of a 492-kilobase chromosome 6 segment encompassing KIT to chromosome 29, and a second allele on chromosome 6 (Cs(6)), derived from the first by repatriation of fused 575-kilobase chromosome 6 and 29 sequences to the KIT locus. We provide evidence that both translocation events involved circular intermediates. This is the first example, to our knowledge, of a phenotype determined by homologous yet non-syntenic alleles that result from a novel copy-number-variant-generating mechanism.


Assuntos
Bovinos/genética , Cromossomos de Mamíferos/genética , Cor de Cabelo/genética , Translocação Genética/genética , Alelos , Animais , Bovinos/classificação , Mapeamento Cromossômico , Variações do Número de Cópias de DNA/genética , Duplicação Gênica/genética , Fusão Gênica/genética , Estudo de Associação Genômica Ampla , Genótipo , Hibridização in Situ Fluorescente , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
3.
Animals (Basel) ; 12(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35158654

RESUMO

Over the last century, genetic diversity in many cattle breeds has been affected by the replacement of traditional local breeds with just a few milk-producing breeds. In the Netherlands, the local Dutch Friesian breed (DF) has gradually been replaced by the Holstein Friesian breed (HF). The objective of this study is to investigate genomewide genetic diversity between a group of historically and recently used DF bulls and a group of recently used HF bulls. Genetic material of 12 historic (hDF), 12 recent DF bulls (rDF), and 12 recent HF bulls (rHF) in the Netherlands was sequenced. Based on the genomic information, different parameters-e.g., allele frequencies, inbreeding coefficient, and runs of homozygosity (ROH)-were calculated. Our findings showed that a large amount of diversity is shared between the three groups, but each of them has a unique genetic identity (12% of the single nucleotide polymorphisms were group-specific). The rDF is slightly more diverged from rHF than hDF. The inbreeding coefficient based on runs of homozygosity (Froh) was higher for rDF (0.24) than for hDF (0.17) or rHF (0.13). Our results also displayed the presence of several genomic regions that differentiated between the groups. In addition, thirteen, forty-five, and six ROH islands were identified in hDF, rDF, and rHF, respectively. The genetic diversity of the DF breed reduced over time, but this did not lead to higher inbreeding levels-especially, inbreeding due to recent ancestors was not increased.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA