Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nature ; 629(8010): 201-210, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600376

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has transformed the treatment of haematological malignancies such as acute lymphoblastic leukaemia, B cell lymphoma and multiple myeloma1-4, but the efficacy of CAR T cell therapy in solid tumours has been limited5. This is owing to a number of factors, including the immunosuppressive tumour microenvironment that gives rise to poorly persisting and metabolically dysfunctional T cells. Analysis of anti-CD19 CAR T cells used clinically has shown that positive treatment outcomes are associated with a more 'stem-like' phenotype and increased mitochondrial mass6-8. We therefore sought to identify transcription factors that could enhance CAR T cell fitness and efficacy against solid tumours. Here we show that overexpression of FOXO1 promotes a stem-like phenotype in CAR T cells derived from either healthy human donors or patients, which correlates with improved mitochondrial fitness, persistence and therapeutic efficacy in vivo. This work thus reveals an engineering approach to genetically enforce a favourable metabolic phenotype that has high translational potential to improve the efficacy of CAR T cells against solid tumours.


Assuntos
Proteína Forkhead Box O1 , Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Células-Tronco , Linfócitos T , Humanos , Camundongos , Linhagem Celular Tumoral , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Mitocôndrias/metabolismo , Fenótipo , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/citologia , Microambiente Tumoral/imunologia , Células-Tronco/citologia , Células-Tronco/imunologia , Células-Tronco/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia
2.
EMBO J ; 39(2): e103637, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31803974

RESUMO

Although adoptive T-cell therapy has shown remarkable clinical efficacy in haematological malignancies, its success in combating solid tumours has been limited. Here, we report that PTPN2 deletion in T cells enhances cancer immunosurveillance and the efficacy of adoptively transferred tumour-specific T cells. T-cell-specific PTPN2 deficiency prevented tumours forming in aged mice heterozygous for the tumour suppressor p53. Adoptive transfer of PTPN2-deficient CD8+ T cells markedly repressed tumour formation in mice bearing mammary tumours. Moreover, PTPN2 deletion in T cells expressing a chimeric antigen receptor (CAR) specific for the oncoprotein HER-2 increased the activation of the Src family kinase LCK and cytokine-induced STAT-5 signalling, thereby enhancing both CAR T-cell activation and homing to CXCL9/10-expressing tumours to eradicate HER-2+ mammary tumours in vivo. Our findings define PTPN2 as a target for bolstering T-cell-mediated anti-tumour immunity and CAR T-cell therapy against solid tumours.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia Adotiva/métodos , Ativação Linfocitária/imunologia , Neoplasias/terapia , Proteína Tirosina Fosfatase não Receptora Tipo 2/fisiologia , Receptor ErbB-2/fisiologia , Receptores de Antígenos de Linfócitos T/imunologia , Transferência Adotiva , Animais , Apresentação de Antígeno/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neoplasias/genética , Neoplasias/imunologia , Transdução de Sinais
3.
Trends Immunol ; 42(12): 1128-1142, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34750058

RESUMO

Tumor necrosis factor (TNF) is a proinflammatory cytokine that is produced and secreted by cytotoxic lymphocytes upon tumor target recognition. Depending on the context, TNF can mediate either pro-survival or pro-death signals. The potential cytotoxicity of T cell-produced TNF, particularly in the context of T cell-directed immunotherapies, has been largely overlooked. However, a spate of recent studies investigating tumor immune evasion through the application of CRISPR-based gene-editing screens have highlighted TNF-mediated killing as an important component of the mammalian T cell antitumor repertoire. In the context of the current understanding of the role of TNF in antitumor immunity, we discuss these studies and touch on their therapeutic implications. Collectively, we provide an enticing prospect to augment immunotherapy responses through TNF cytotoxicity.


Assuntos
Imunoterapia , Neoplasias , Animais , Citotoxicidade Imunológica , Humanos , Imunoterapia/métodos , Mamíferos , Neoplasias/terapia , Linfócitos T , Evasão Tumoral , Fatores de Necrose Tumoral
4.
EMBO Rep ; 22(11): e53391, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34467615

RESUMO

The success of cancer immunotherapy is limited to a subset of patients, highlighting the need to identify the processes by which tumors evade immunity. Using CRISPR/Cas9 screening, we reveal that melanoma cells lacking HOIP, the catalytic subunit of LUBAC, are highly susceptible to both NK and CD8+ T-cell-mediated killing. We demonstrate that HOIP-deficient tumor cells exhibit increased sensitivity to the combined effect of the inflammatory cytokines, TNF and IFN-γ, released by NK and CD8+ T cells upon target recognition. Both genetic deletion and pharmacological inhibition of HOIP augment tumor cell sensitivity to combined TNF and IFN-γ. Together, we unveil a protective regulatory axis, involving HOIP, which limits a transcription-dependent form of cell death that engages both intrinsic and extrinsic apoptotic machinery upon exposure to TNF and IFN-γ. Our findings highlight HOIP inhibition as a potential strategy to harness and enhance the killing capacity of TNF and IFN-γ during immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Ubiquitina-Proteína Ligases , Apoptose/genética , Humanos , Interferon gama/farmacologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia , Ubiquitina-Proteína Ligases/metabolismo
5.
J Immunol ; 204(8): 2308-2315, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32152070

RESUMO

CRISPR/Cas9 technologies have revolutionized our understanding of gene function in complex biological settings, including T cell immunology. Current CRISPR-mediated gene editing strategies in T cells require in vitro stimulation or culture that can both preclude the study of unmanipulated naive T cells and alter subsequent differentiation. In this study, we demonstrate highly efficient gene editing within uncultured primary naive murine CD8+ T cells by electroporation of recombinant Cas9/sgRNA ribonucleoprotein immediately prior to in vivo adoptive transfer. Using this approach, we generated single and double gene knockout cells within multiple mouse infection models. Strikingly, gene deletion occurred even when the transferred cells were left in a naive state, suggesting that gene deletion occurs independent of T cell activation. Finally, we demonstrate that targeted mutations can be introduced into naive CD8+ T cells using CRISPR-based homology-directed repair. This protocol thus expands CRISPR-based gene editing approaches beyond models of robust T cell activation to encompass both naive T cell homeostasis and models of weak activation, such as tolerance and tumor models.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes , Animais , Sistemas CRISPR-Cas/imunologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/imunologia , Eletroporação , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polimorfismo de Nucleotídeo Único/genética , Polimorfismo de Nucleotídeo Único/imunologia
6.
Eur J Immunol ; 49(5): 770-781, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30729501

RESUMO

Mutation of Dedicator of cytokinesis 8 (DOCK8) has previously been reported to provide resistance to the Th17 cell dependent EAE in mice. Contrary to expectation, we observed an elevation of Th17 cells in two different DOCK8 mutant mouse strains in the steady state. This was specific for Th17 cells with no change in Th1 or Th2 cell populations. In vitro Th cell differentiation assays revealed that the elevated Th17 cell population was not due to a T cell intrinsic differentiation bias. Challenging these mutant mice in the EAE model, we confirmed a resistance to this autoimmune disease with Th17 cells remaining elevated systemically while cellular infiltration in the CNS was reduced. Infiltrating T cells lost the bias toward Th17 cells indicating a relative reduction of Th17 cells in the CNS and a Th17 cell specific migration disadvantage. Adoptive transfers of Th1 and Th17 cells in EAE-affected mice further supported the Th17 cell-specific migration defect, however, DOCK8-deficient Th17 cells expressed normal Th17 cell-specific CCR6 levels and migrated toward chemokine gradients in transwell assays. This study shows that resistance to EAE in DOCK8 mutant mice is achieved despite a systemic Th17 bias.


Assuntos
Suscetibilidade a Doenças , Encefalomielite Autoimune Experimental/etiologia , Fatores de Troca do Nucleotídeo Guanina/genética , Contagem de Linfócitos , Mutação , Células Th17/imunologia , Células Th17/metabolismo , Animais , Biomarcadores , Quimiotaxia de Leucócito/genética , Quimiotaxia de Leucócito/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Expressão Gênica , Predisposição Genética para Doença , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
7.
Immunity ; 34(4): 492-504, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21497118

RESUMO

Polarized segregation of proteins in T cells is thought to play a role in diverse cellular functions including signal transduction, migration, and directed secretion of cytokines. Persistence of this polarization can result in asymmetric segregation of fate-determining proteins during cell division, which may enable a T cell to generate diverse progeny. Here, we provide evidence that a lineage-determining transcription factor, T-bet, underwent asymmetric organization in activated T cells preparing to divide and that it was unequally partitioned into the two daughter cells. This unequal acquisition of T-bet appeared to result from its asymmetric destruction during mitosis by virtue of concomitant asymmetric segregation of the proteasome. These results suggest a mechanism by which a cell may unequally localize cellular activities during division, thereby imparting disparity in the abundance of cell fate regulators in the daughter cells.


Assuntos
Mitose , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas com Domínio T/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Animais , Polaridade Celular , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas com Domínio T/metabolismo , Linfócitos T/enzimologia
8.
J Immunol ; 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28794229

RESUMO

Mutations in the dedicator of cytokinesis 8 (DOCK8) gene cause an autosomal recessive form of hyper-IgE syndrome, characterized by chronic immunodeficiency with persistent microbial infection and increased incidence of malignancy. These manifestations suggest a defect in cytotoxic lymphocyte function and immune surveillance. However, how DOCK8 regulates NK cell-driven immune responses remains unclear. In this article, we demonstrate that DOCK8 regulates NK cell cytotoxicity and cytokine production in response to target cell engagement or receptor ligation. Genetic ablation of DOCK8 in human NK cells attenuated cytokine transcription and secretion through inhibition of Src family kinase activation, particularly Lck, downstream of target cell engagement or NKp30 ligation. PMA/Ionomycin treatment of DOCK8-deficient NK cells rescued cytokine production, indicating a defect proximal to receptor ligation. Importantly, NK cells from DOCK8-deficient patients had attenuated production of IFN-γ and TNF-α upon NKp30 stimulation. Taken together, we reveal a novel molecular mechanism by which DOCK8 regulates NK cell-driven immunity.

9.
Immunol Cell Biol ; 94(3): 306-11, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26391810

RESUMO

Lethal giant larvae-1 (Lgl-1) is an evolutionary conserved protein that regulates cell polarity in diverse lineages; however, the role of Lgl-1 in the polarity and function of immune cells remains to be elucidated. To assess the role of Lgl-1 in T cells, we generated chimeric mice with a hematopoietic system deficient for Lgl-1. Lgl-1 deficiency did not impair the activation or function of peripheral CD8(+) T cells in response to antigen presentation in vitro, but did skew effector and memory T-cell differentiation. When challenged with antigen-expressing virus or tumor, Lgl-1-deficient mice displayed altered T-cell responses. This manifested in a stronger antiviral and antitumor effector CD8(+) T-cell response, the latter resulting in enhanced control of MC38-OVA tumors. These results reveal a novel role for Lgl-1 in the regulation of virus-specific T-cell responses and antitumor immunity.


Assuntos
Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Glicoproteínas/deficiência , Animais , Apresentação de Antígeno/imunologia , Imunofenotipagem , Vírus da Influenza A/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Fenótipo
10.
Crit Rev Immunol ; 35(4): 325-47, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26757394

RESUMO

A synapse is a specialized structure that forms when the plasma membrane of two cells come into close contact to facilitate communication and signaling. Cells of the immune system form 'immunological' synapses that have an ordered structure and are essential for immune cell activation, function and homeostasis. Optimal synapse formation is not only critical for the generation of effective immunity against pathogens but is also essential for immune surveillance against cancer and for the prevention of immune disorders. Not surprisingly, defective synapse formation can therefore have severe consequences for human health, culminating in poor immune function leading to immunodeficiency disease or failure to detect and control infected or cancerous cells. Here, we discuss the immunological synapse formed by cytotoxic lymphocytes in both immunodeficiency diseases and anticancer immunity and touch on novel therapies that may alter or enhance synapse formation.


Assuntos
Síndromes de Imunodeficiência/imunologia , Sinapses Imunológicas/metabolismo , Imunoterapia , Neoplasias/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Antígenos de Neoplasias/imunologia , Homeostase , Humanos , Imunidade Celular , Síndromes de Imunodeficiência/terapia , Vigilância Imunológica , Neoplasias/terapia
11.
J Immunol ; 192(2): 553-7, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24337740

RESUMO

DNAX accessory molecule 1 (DNAM-1) is expressed on all CD8(+) T cells and promotes their activation and effector function. DNAM-1 interacts with LFA-1, a critical molecule for immunological synapse formation between T cells and APCs, and for cytotoxic killing of target cells. Mice that lack DNAM-1 display abnormal T cell responses and antitumor activity; however, the mechanism involved is unclear. In this article, we show that DNAM-1 deficiency results in reduced proliferation of CD8(+) T cells after Ag presentation and impaired cytotoxic activity. We also demonstrate that DNAM-1-deficient T cells show reduced conjugations with tumor cells and decreased recruitment of both LFA-1 and lipid rafts to the immunological synapse, which correlates with reduced tumor cell killing in vitro. This synapse defect may explain why DNAM-1-deficient mice cannot clear tumors in vivo, and highlights the importance of DNAM-1 and the immunological synapse in T cell-mediated antitumor immunity.


Assuntos
Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/metabolismo , Linfócitos T CD8-Positivos/imunologia , Sinapses Imunológicas/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos de Diferenciação de Linfócitos T/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sinapses Imunológicas/genética , Sinapses Imunológicas/metabolismo , Lipídeos/genética , Lipídeos/imunologia , Antígeno-1 Associado à Função Linfocitária/genética , Antígeno-1 Associado à Função Linfocitária/imunologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
12.
J Immunol ; 193(11): 5744-50, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25348626

RESUMO

Cytotoxic lymphocytes destroy pathogen-infected and transformed cells through the cytotoxic granule exocytosis death pathway, which is dependent on the delivery of proapoptotic granzymes into the target cell cytosol by the pore-forming protein, perforin. Despite the importance of mouse models in understanding the role of cytotoxic lymphocytes in immune-mediated disease and their role in cancer immune surveillance, no reliable intracellular detection method exists for mouse perforin. Consequently, rapid, flow-based assessment of cytotoxic potential has been problematic, and complex assays of function are generally required. In this study, we have developed a novel method for detecting perforin in primary mouse cytotoxic T lymphocytes by immunofluorescence and flow cytometry. We used this new technique to validate perforin colocalization with granzyme B in cytotoxic granules polarized to the immunological synapse, and to assess the expression of perforin in cytotoxic T lymphocytes at various stages of activation. The sensitivity of this technique also allowed us to distinguish perforin levels in Prf1(+/+) and Prf1(+/-) mice. This new methodology will have broad applications and contribute to advances within the fields of lymphocyte biology, infectious disease, and cancer.


Assuntos
Granzimas/metabolismo , Sinapses Imunológicas/metabolismo , Espaço Intracelular/metabolismo , Perforina/metabolismo , Linfócitos T Citotóxicos/imunologia , Animais , Separação Celular , Células Cultivadas , Citometria de Fluxo , Imunofluorescência , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Perforina/genética , Transporte Proteico
13.
J Immunol ; 185(1): 367-75, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20530266

RESUMO

Asymmetric cell division is a potential means by which cell fate choices during an immune response are orchestrated. Defining the molecular mechanisms that underlie asymmetric division of T cells is paramount for determining the role of this process in the generation of effector and memory T cell subsets. In other cell types, asymmetric cell division is regulated by conserved polarity protein complexes that control the localization of cell fate determinants and spindle orientation during division. We have developed a tractable, in vitro model of naive CD8(+) T cells undergoing initial division while attached to dendritic cells during Ag presentation to investigate whether similar mechanisms might regulate asymmetric division of T cells. Using this system, we show that direct interactions with APCs provide the cue for polarization of T cells. Interestingly, the immunological synapse disseminates before division even though the T cells retain contact with the APC. The cue from the APC is translated into polarization of cell fate determinants via the polarity network of the Par3 and Scribble complexes, and orientation of the mitotic spindle during division is orchestrated by the partner of inscuteable/G protein complex. These findings suggest that T cells have selectively adapted a number of evolutionarily conserved mechanisms to generate diversity through asymmetric cell division.


Assuntos
Apresentação de Antígeno/imunologia , Divisão Celular/imunologia , Sequência Conservada/imunologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Animais , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Adesão Celular/imunologia , Polaridade Celular/imunologia , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Subpopulações de Linfócitos T/metabolismo
14.
Clin Dev Immunol ; 2012: 417485, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22461835

RESUMO

Polarity refers to the asymmetric distribution of different cellular components within a cell and is central to many cell functions. In T-cells, polarity regulates the activation, migration, and effector function of cytotoxic T-cells (CTLs) during an immune response. The regulation of asymmetric cell division by polarity proteins may also dictate CTL effector and memory differentiation following antigen presentation. Small GTPases, along with their associated polarity and adaptor proteins, are critical for mediating the polarity changes necessary for T-cell activation and function, and in turn, are regulated by guanine exchange factors (GEFS) and GTPase activating proteins (GAPS). For example, a novel GEF, dedicator of cytokinesis 8 (DOCK8) was recently identified as a regulator of immune cell function and mutations in DOCK8 have been detected in patients with severe combined immunodeficiency. Both B and T-cells from DOCK8 mutant mice form defective immunological synapses and have abnormal functions, in addition to impaired immune memory development. This paper will discuss the interplay between polarity proteins and GTPases, and their role in T-cell function.


Assuntos
Polaridade Celular/imunologia , Fatores de Troca do Nucleotídeo Guanina/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Apresentação de Antígeno/imunologia , Divisão Celular/imunologia , Movimento Celular/imunologia , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Sinapses Imunológicas/metabolismo , Camundongos , Transdução de Sinais/imunologia , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/metabolismo
15.
Front Immunol ; 13: 931630, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874669

RESUMO

Cytotoxic lymphocytes are essential for anti-tumor immunity, and for effective responses to cancer immunotherapy. Natural killer cell granule protein 7 (NKG7) is expressed at high levels in cytotoxic lymphocytes infiltrating tumors from patients treated with immunotherapy, but until recently, the role of this protein in cytotoxic lymphocyte function was largely unknown. Unexpectedly, we found that highly CD8+ T cell-immunogenic murine colon carcinoma (MC38-OVA) tumors grew at an equal rate in Nkg7+/+ and Nkg7-/- littermate mice, suggesting NKG7 may not be necessary for effective CD8+ T cell anti-tumor activity. Mechanistically, we found that deletion of NKG7 reduces the ability of CD8+ T cells to degranulate and kill target cells in vitro. However, as a result of inefficient cytotoxic activity, NKG7 deficient T cells form a prolonged immune synapse with tumor cells, resulting in increased secretion of inflammatory cytokines, including tumor necrosis factor alpha (TNF). By deleting the TNF receptor, TNFR1, from MC38-OVA tumors, we demonstrate that this hyper-secretion of TNF compensates for reduced synapse-mediated cytotoxic activity against MC38-OVA tumors in vivo, via increased TNF-mediated tumor cell death. Taken together, our results demonstrate that NKG7 enhances CD8+ T cell immune synapse efficiency, which may serve as a mechanism to accelerate direct cytotoxicity and limit potentially harmful inflammatory responses.


Assuntos
Linfócitos T CD8-Positivos , Sinapses Imunológicas , Proteínas de Membrana , Neoplasias , Animais , Imunoterapia/métodos , Inflamação/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Neoplasias/terapia , Fator de Necrose Tumoral alfa/metabolismo
16.
Cancer Immunol Res ; 10(1): 87-107, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34782346

RESUMO

Targeting chromatin binding proteins and modifying enzymes can concomitantly affect tumor cell proliferation and survival, as well as enhance antitumor immunity and augment cancer immunotherapies. By screening a small-molecule library of epigenetics-based therapeutics, BET (bromo- and extra-terminal domain) inhibitors (BETi) were identified as agents that sensitize tumor cells to the antitumor activity of CD8+ T cells. BETi modulated tumor cells to be sensitized to the cytotoxic effects of the proinflammatory cytokine TNF. By preventing the recruitment of BRD4 to p65-bound cis-regulatory elements, BETi suppressed the induction of inflammatory gene expression, including the key NF-κB target genes BIRC2 (cIAP1) and BIRC3 (cIAP2). Disruption of prosurvival NF-κB signaling by BETi led to unrestrained TNF-mediated activation of the extrinsic apoptotic cascade and tumor cell death. Administration of BETi in combination with T-cell bispecific antibodies (TCB) or immune-checkpoint blockade increased bystander killing of tumor cells and enhanced tumor growth inhibition in vivo in a TNF-dependent manner. This novel epigenetic mechanism of immunomodulation may guide future use of BETi as adjuvants for immune-oncology agents.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Proteínas Inibidoras de Apoptose/genética , Proteínas Nucleares/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Animais , Apoptose/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
17.
Immunol Cell Biol ; 89(4): 549-57, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20956985

RESUMO

The movement of proteins within cells can provide dynamic indications of cell signaling and cell polarity, but methods are needed to track and quantify subcellular protein movement within tissue environments. Here we present a semiautomated approach to quantify subcellular protein location for hundreds of migrating cells within intact living tissue using retrovirally expressed fluorescent fusion proteins and time-lapse two-photon microscopy of intact thymic lobes. We have validated the method using GFP-PKCζ, a marker for cell polarity, and LAT-GFP, a marker for T-cell receptor signaling, and have related the asymmetric distribution of these proteins to the direction and speed of cell migration. These approaches could be readily adapted to other fluorescent fusion proteins, tissues and biological questions.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Espaço Intracelular/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Movimento Celular/fisiologia , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Timo/metabolismo
18.
Front Immunol ; 12: 661737, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025662

RESUMO

The recent advent of targeted and immune-based therapies has revolutionized the treatment of melanoma and transformed outcomes for patients with metastatic disease. The majority of patients develop resistance to the current standard-of-care targeted therapy, dual BRAF and MEK inhibition, prompting evaluation of a new combination incorporating a CDK4/6 inhibitor. Based on promising preclinical data, combined BRAF, MEK and CDK4/6 inhibition has recently entered clinical trials for the treatment of BRAFV600 melanoma. Interestingly, while BRAF- and MEK-targeted therapy was initially developed on the basis of potent tumor-intrinsic effects, it was later discovered to have significant immune-potentiating activity. Recent studies have also identified immune-related impacts of CDK4/6 inhibition, though these are less well defined and can be both immune-potentiating and immune-inhibitory. BRAFV600 melanoma patients are also eligible to receive immunotherapy, specifically checkpoint inhibitors against PD-1 and CTLA-4. The immunomodulatory activity of BRAF/MEK-targeted therapies has prompted interest in combination therapies incorporating these with immune checkpoint inhibitors, however recent clinical trials investigating this approach have produced variable results. Here, we summarize the immunomodulatory effects of BRAF, MEK and CDK4/6 inhibitors, shedding light on the prospective utility of this combination alone and in conjunction with immune checkpoint blockade. Understanding the mechanisms that underpin the clinical efficacy of these available therapies is a critical step forward in optimizing novel combination and scheduling approaches to combat melanoma and improve patient outcomes.


Assuntos
Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunomodulação , Melanoma/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Ensaios Clínicos como Assunto , Humanos , Melanoma/imunologia , Terapia de Alvo Molecular , Neoplasias Cutâneas/tratamento farmacológico
19.
Sci Adv ; 7(8)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33608275

RESUMO

Multimodal single-cell RNA sequencing enables the precise mapping of transcriptional and phenotypic features of cellular differentiation states but does not allow for simultaneous integration of critical posttranslational modification data. Here, we describe SUrface-protein Glycan And RNA-seq (SUGAR-seq), a method that enables detection and analysis of N-linked glycosylation, extracellular epitopes, and the transcriptome at the single-cell level. Integrated SUGAR-seq and glycoproteome analysis identified tumor-infiltrating T cells with unique surface glycan properties that report their epigenetic and functional state.

20.
Cancer Immunol Res ; 9(2): 136-146, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33303574

RESUMO

Combined inhibition of BRAF, MEK, and CDK4/6 is currently under evaluation in clinical trials for patients with melanoma harboring a BRAFV600 mutation. While this triple therapy has potent tumor-intrinsic effects, the impact of this combination on antitumor immunity remains unexplored. Here, using a syngeneic BrafV600ECdkn2a-/-Pten-/- melanoma model, we demonstrated that triple therapy promoted durable tumor control through tumor-intrinsic mechanisms and promoted immunogenic cell death and T-cell infiltration. Despite this, tumors treated with triple therapy were unresponsive to immune checkpoint blockade (ICB). Flow cytometric and single-cell RNA sequencing analyses of tumor-infiltrating immune populations revealed that triple therapy markedly depleted proinflammatory macrophages and cross-priming CD103+ dendritic cells, the absence of which correlated with poor overall survival and clinical responses to ICB in patients with melanoma. Indeed, immune populations isolated from tumors of mice treated with triple therapy failed to stimulate T-cell responses ex vivo While combined BRAF, MEK, and CDK4/6 inhibition demonstrates favorable tumor-intrinsic activity, these data suggest that collateral effects on tumor-infiltrating myeloid populations may impact antitumor immunity. These findings have important implications for the design of combination strategies and clinical trials that incorporate BRAF, MEK, and CDK4/6 inhibition with immunotherapy for the treatment of patients with melanoma.


Assuntos
Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Imunoterapia/métodos , Melanoma/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Animais , Quinase 4 Dependente de Ciclina/imunologia , Masculino , Melanoma/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Quinases de Proteína Quinase Ativadas por Mitógeno/imunologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/imunologia , Neoplasias Cutâneas/imunologia , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA