Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuroscience ; 158(1): 275-83, 2009 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-18358625

RESUMO

NMDA receptors (NMDARs) are key glutamatergic receptors in the CNS. Their permeability to Ca2+ and their voltage-dependent Mg2+ block make them essential for synaptic transmission, synaptic plasticity, rhythmogenesis, gene expression and excitotoxicity. One very peculiar property is that their activation requires the binding of both glutamate and a co-agonist like glycine or D-serine. There is a growing body of evidence indicating that D-serine, rather than glycine as originally thought, is the endogenous ligand for NMDARs in many brain structures. D-serine is synthesized mainly in glial cells and it is released upon activation of glutamate receptors. Its concentration in the synaptic cleft controls the number of NMDAR available for activation by glutamate. Consequently, the glial environment of neurons has a critical impact on the direction and magnitude of NMDAR-dependent synaptic plasticity.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo , Transmissão Sináptica/fisiologia , Animais , Astrócitos/ultraestrutura , Sítios de Ligação/fisiologia , Encéfalo/ultraestrutura , Comunicação Celular/fisiologia , Ácido Glutâmico/metabolismo , Humanos , Ligantes , Neurônios/ultraestrutura
2.
J Neuroendocrinol ; 14(3): 241-6, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11999725

RESUMO

The supraoptic and paraventricular nuclei of the hypothalamus undergo reversible anatomical changes under conditions of intense neurohypophysial hormone secretion, such as lactation, parturition and chronic dehydration. This morphological remodelling includes a reduction in astrocytic coverage of neurones resulting in an increase in the number and extent of directly juxtaposed somatic and dendritic surfaces. There is a growing body of evidence indicating that such anatomical plasticity is of functional significance. Astrocytic-dependent clearance of electrolytes and neurotransmitters from the extracellular space appears to be altered under conditions where glial coverage of magnocellular neurones is reduced. Glutamate, for example, has been found to accumulate in the extracellular space in the supraoptic nucleus of lactating animals and cause a modulation of synaptic efficacy. On the other hand, the range of action of substances released from astrocytes and acting on adjacent magnocellular neurones is expected to be limited during such anatomical remodelling. It thus appears that the structural plasticity of the magnocellular nuclei does affect neuroglial interactions, inducing significant changes in signal transmission and processing.


Assuntos
Núcleo Hipotalâmico Anterior/citologia , Núcleo Hipotalâmico Anterior/fisiologia , Neuroglia/citologia , Neuroglia/fisiologia , Animais , Astrócitos/citologia , Astrócitos/fisiologia , Espaço Extracelular/metabolismo , Ácido Glutâmico/metabolismo , Homeostase , Íons , Ocitocina/metabolismo , Ácido gama-Aminobutírico/metabolismo
3.
J Neuroendocrinol ; 16(4): 303-7, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15089966

RESUMO

The adult hypothalamic-neurohypophysial system undergoes activity-dependent morphological plasticity that modifies the astrocytic enwrapping of its magnocellular neurones. For a long time, the functional consequences of such changes have remained hypothetical. Modifications in the glial environment of neurones are expected to have important physiological repercussions in view of the various functions played by astrocytes in the central nervous system. In particular, glial cells are essential for uptake of neurotransmitters, including glutamate, and for physically and functionally restricting diffusion of neuroactive substances within the extracellular space. Recent studies performed in the supraoptic nucleus of lactating and chronically dehydrated animals, in conditions where astrocytic coverage of neurones is reduced, have revealed a significant impairment of glutamate clearance. The resulting accumulation of the excitatory amino acid in the extracellular space around glutamatergic inputs causes an enhanced activation of presynaptic metabotropic glutamate receptors that inhibit transmitter release. In the supraoptic nucleus of lactating rats, neuroglial remodelling is accompanied by modification of the geometry, size and diffusion properties of the extracellular space. The latter observations suggest that, in the activated supraoptic nucleus, the range of action and the concentration of released neuroactive substances may be significantly enhanced. Overall, our observations indicate that the glial environment of supraoptic neurones influences synaptic glutamatergic transmission, as well as extrasynaptic forms of communication.


Assuntos
Núcleo Supraóptico/citologia , Núcleo Supraóptico/fisiologia , Transmissão Sináptica/fisiologia , Animais , Astrócitos/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia
4.
Neuroscience ; 263: 46-53, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24434770

RESUMO

Cannabinoid receptor type 1 (CB1)-dependent signaling in the brain is known to modulate food intake. Recent evidence has actually shown that CB1 can both inhibit and stimulate food intake in fasting/refeeding conditions, depending on the specific neuronal circuits involved. However, the exact brain sites where this bimodal control is exerted and the underlying neurobiological mechanisms are not fully understood yet. Using pharmacological and electrophysiological approaches, we show that local CB1 blockade in the paraventricular nucleus of the hypothalamus (PVN) increases fasting-induced hyperphagia in rats. Furthermore, local CB1 blockade in the PVN also increases the orexigenic effect of the gut hormone ghrelin in animals fed ad libitum. At the electrophysiological level, CB1 blockade in slices containing the PVN potentiates the decrease of the activity of PVN neurons induced by long-term application of ghrelin. Hence, the PVN is (one of) the site(s) where signals associated with the body's energy status determine the direction of the effects of endocannabinoid signaling on food intake.


Assuntos
Hiperfagia/fisiopatologia , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Receptor CB1 de Canabinoide/fisiologia , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Grelina/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Piperidinas/farmacologia , Pirazóis/farmacologia , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/antagonistas & inibidores
5.
J Neuroendocrinol ; 24(4): 566-76, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22128866

RESUMO

Classically, glia have been regarded as non-excitable cells that provide nourishment and physical scaffolding for neurones. However, it is now generally accepted that glia are active participants in brain function that can modulate neuronal communication via several mechanisms. Investigations of anatomical plasticity in the magnocellular neuroendocrine system of the hypothalamic paraventricular and supraoptic nuclei led the way in the development of much of our understanding of glial regulation of neuronal activity. In this review, we provide an overview of glial regulation of magnocellular neurone activity from a historical perspective of the development of our knowledge of the morphological changes that are evident in the paraventricular and supraoptic nuclei. We also focus on recent data from the authors' laboratories presented at the 9th World Congress on Neurohypophysial Hormones that have contributed to our understanding of the multiple mechanisms by which glia modulate the activity of neurones, including: gliotransmitter modulation of synaptic transmission; trans-synaptic modulation by glial neurotransmitter transporter regulation of neurotransmitter spillover; and glial neurotransmitter transporter modulation of excitability by regulation of ambient neurotransmitter levels and their action on extrasynaptic receptors. The magnocellular neuroendocrine system secretes oxytocin and vasopressin from the posterior pituitary gland to control birth, lactation and body fluid balance, and we finally speculate as to whether glial regulation of individual magnocellular neurones might co-ordinate population activity to respond appropriately to altered physiological circumstances.


Assuntos
Lactação/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Núcleo Supraóptico/fisiologia , Transmissão Sináptica/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia , Animais , Arginina Vasopressina/fisiologia , Feminino , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Ocitocina/fisiologia , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Supraóptico/citologia
6.
Neurobiol Aging ; 32(8): 1495-504, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19800712

RESUMO

To gain insight into the contribution of d-serine to impaired cognitive aging, we compared the metabolic pathway and content of the amino acid as well as d-serine-dependent synaptic transmission and plasticity in the hippocampus of young and old rats of the Wistar and Lou/C/Jall strains. Wistar rats display cognitive impairments with aging that are not found in the latter strain, which is therefore considered a model of healthy aging. Both mRNA and protein levels of serine racemase, the d-serine synthesizing enzyme, were decreased in the hippocampus but not in the cerebral cortex or cerebellum of aged Wistar rats, whereas the expression of d-amino acid oxidase, which degrades the amino acid, was not affected. Consequently, hippocampal levels of endogenous d-serine were significantly lower. In contrast, serine racemase expression and d-serine levels were not altered in the hippocampus of aged Lou/C/Jall rats. Ex vivo electrophysiological recordings in hippocampal slices showed a marked reduction in N-methyl-d-aspartate-receptor (NMDA-R)-mediated synaptic potentials and theta-burst-induced long-term potentiation (LTP) in the CA1 area of aged Wistar rats, which were restored by exogenous d-serine. In contrast, NMDA-R activation, LTP induction and responses to d-serine were not altered in aged Lou/C/Jall rats. These results further strengthen the notion that the serine racemase-dependent pathway is a prime target of hippocampus-dependent cognitive deficits with aging. Understanding the processes that specifically affect serine racemase during aging could thus provide key insights into the treatment of memory deficits in the elderly.


Assuntos
Envelhecimento/fisiologia , Hipocampo/fisiologia , Transtornos da Memória/enzimologia , Transtornos da Memória/fisiopatologia , Racemases e Epimerases/antagonistas & inibidores , Racemases e Epimerases/biossíntese , Transdução de Sinais , Envelhecimento/genética , Animais , Transtornos Cognitivos/enzimologia , Transtornos Cognitivos/genética , Regulação Enzimológica da Expressão Gênica , Hipocampo/enzimologia , Masculino , Transtornos da Memória/genética , Racemases e Epimerases/genética , Ratos , Ratos Wistar , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA