Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Cell Sci ; 136(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36695178

RESUMO

Nuclear envelope (NE) expansion must be controlled to maintain nuclear shape and function. The nuclear membrane expands massively during closed mitosis, enabling chromosome segregation within an intact NE. Phosphatidic acid (PA) and diacylglycerol (DG) can both serve as biosynthetic precursors for membrane lipid synthesis. How they are regulated in time and space and what the implications are of changes in their flux for mitotic fidelity are largely unknown. Using genetically encoded PA and DG probes, we show that DG is depleted from the inner nuclear membrane during mitosis in the fission yeast Schizosaccharomyces pombe, but PA does not accumulate, indicating that it is rerouted to membrane synthesis. We demonstrate that DG-to-PA conversion catalyzed by the diacylglycerol kinase Dgk1 (also known as Ptp4) and direct glycerophospholipid synthesis from DG by diacylglycerol cholinephosphotransferase/ethanolaminephosphotransferase Ept1 reinforce NE expansion. We conclude that DG consumption through both the de novo pathway and the Kennedy pathway fuels a spike in glycerophospholipid biosynthesis, controlling NE expansion and, ultimately, mitotic fidelity.


Assuntos
Membrana Nuclear , Schizosaccharomyces , Membrana Nuclear/metabolismo , Diglicerídeos/metabolismo , Mitose , Divisão do Núcleo Celular , Schizosaccharomyces/metabolismo , Glicerofosfolipídeos/metabolismo
2.
J Cell Sci ; 135(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36148799

RESUMO

Tropomyosins are structurally conserved α-helical coiled-coil proteins that bind along the length of filamentous actin (F-actin) in fungi and animals. Tropomyosins play essential roles in the stability of actin filaments and in regulating myosin II contractility. Despite the crucial role of tropomyosin in actin cytoskeletal regulation, in vivo investigations of tropomyosin are limited, mainly due to the suboptimal live-cell imaging tools currently available. Here, we report on an mNeonGreen (mNG)-tagged tropomyosin, with native promoter and linker length configuration, that clearly reports tropomyosin dynamics in Schizosaccharomyces pombe (Cdc8), Schizosaccharomyces japonicus (Cdc8) and Saccharomyces cerevisiae (Tpm1 and Tpm2). We also describe a fluorescent probe to visualize mammalian tropomyosin (TPM2 isoform). Finally, we generated a camelid nanobody against S. pombe Cdc8, which mimics the localization of mNG-Cdc8 in vivo. Using these tools, we report the presence of tropomyosin in previously unappreciated patch-like structures in fission and budding yeasts, show flow of tropomyosin (F-actin) cables to the cytokinetic actomyosin ring and identify rearrangements of the actin cytoskeleton during mating. These powerful tools and strategies will aid better analyses of tropomyosin and F-actin cables in vivo.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Anticorpos de Domínio Único , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Citocinese , Corantes Fluorescentes/metabolismo , Mamíferos/metabolismo , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Anticorpos de Domínio Único/metabolismo , Tropomiosina/genética , Tropomiosina/metabolismo
3.
Yeast ; 41(3): 73-86, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38451028

RESUMO

Schizosaccharomyces japonicus belongs to the single-genus class Schizosaccharomycetes, otherwise known as "fission yeasts." As part of a composite model system with its widely studied S. pombe sister species, S. japonicus has provided critical insights into the workings and the evolution of cell biological mechanisms. Furthermore, its divergent biology makes S. japonicus a valuable model organism in its own right. However, the currently available genome assembly contains gaps and has been unable to resolve centromeres and other repeat-rich chromosomal regions. Here we present a telomere-to-telomere long-read genome assembly of the S. japonicus genome. This includes the three megabase-length chromosomes, with centromeres hundreds of kilobases long, rich in 5S ribosomal RNA genes, transfer RNA genes, long terminal repeats, and short repeats. We identify a gene-sparse region on chromosome 2 that resembles a 331 kb centromeric duplication. We revise the genome size of S. japonicus to at least 16.6 Mb and possibly up to 18.12 Mb, at least 30% larger than previous estimates. Our whole genome assembly will support the growing S. japonicus research community and facilitate research in new directions, including centromere and DNA repeat evolution, and yeast comparative genomics.


Assuntos
Schizosaccharomyces , Schizosaccharomyces/genética , Telômero/genética , Centrômero/genética
4.
Yeast ; 41(3): 95-107, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38146786

RESUMO

The fission yeast species Schizosaccharomyces japonicus is currently divided into two varieties-S. japonicus var. japonicus and S. japonicus var. versatilis. Here we examine the var. versatilis isolate CBS5679. The CBS5679 genome shows 88% identity to the reference genome of S. japonicus var. japonicus at the coding sequence level, with phylogenetic analyses suggesting that it has split from the S. japonicus lineage 25 million years ago. The CBS5679 genome contains a reciprocal translocation between chromosomes 1 and 2, together with several large inversions. The products of genes linked to the major translocation are associated with 'metabolism' and 'cellular assembly' ontology terms. We further show that CBS5679 does not generate viable progeny with the reference strain of S. japonicus. Although CBS5679 shares closer similarity to the 'type' strain of var. versatilis as compared to S. japonicus, it is not identical to the type strain, suggesting population structure within var. versatilis. We recommend that the taxonomic status of S. japonicus var. versatilis is raised, with it being treated as a separate species, Schizosaccharomyces versatilis.


Assuntos
Schizosaccharomyces , Schizosaccharomyces/genética , Filogenia , Evolução Biológica
5.
J Cell Sci ; 131(14)2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-30030298

RESUMO

A long-appreciated variation in fundamental cell biological processes between different species is becoming increasingly tractable due to recent breakthroughs in whole-genome analyses and genome editing techniques. However, the bulk of our mechanistic understanding in cell biology continues to come from just a few well-established models. In this Review, I use the highly diverse strategies of chromosome segregation in eukaryotes as an instrument for a more general discussion on phenotypic variation, possible rules underlying its emergence and its utility in understanding conserved functional relationships underlying this process. Such a comparative approach, supported by modern molecular biology tools, might provide a wider, holistic view of biology that is difficult to achieve when concentrating on a single experimental system.


Assuntos
Segregação de Cromossomos , Cromossomos/genética , Eucariotos/genética , Animais , Biologia , Genoma , Humanos , Mitose
6.
BMC Biol ; 15(1): 55, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28662661

RESUMO

Model organisms are widely used in research as accessible and convenient systems to study a particular area or question in biology. Traditionally only a handful of organisms have been widely studied, but modern research tools are enabling researchers to extend the set of model organisms to include less-studied and more unusual systems. This Forum highlights a range of 'non-model model organisms' as emerging systems for tackling questions across the whole spectrum of biology (and beyond), the opportunities and challenges, and the outlook for the future.


Assuntos
Biologia , Eucariotos , Modelos Animais , Animais , Plantas
7.
Genes Dev ; 23(6): 660-74, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19299557

RESUMO

Cytokinesis is the terminal step of the cell cycle during which a mother cell divides into daughter cells. Often, the machinery of cytokinesis is positioned in such a way that daughter cells are born roughly equal in size. However, in many specialized cell types or under certain environmental conditions, the cell division machinery is placed at nonmedial positions to produce daughter cells of different sizes and in many cases of different fates. Here we review the different mechanisms that position the division machinery in prokaryotic and eukaryotic cell types. We also describe cytokinesis-positioning mechanisms that are not adequately explained by studies in model organisms and model cell types.


Assuntos
Evolução Biológica , Forma Celular/fisiologia , Citocinese/fisiologia , Microtúbulos/fisiologia , Fuso Acromático/fisiologia , Animais , Divisão Celular/fisiologia , Humanos
8.
PLoS Genet ; 9(10): e1003886, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24146635

RESUMO

How the molecular mechanisms of stress response are integrated at the cellular level remains obscure. Here we show that the cellular polarity machinery in the fission yeast Schizosaccharomyces pombe undergoes dynamic adaptation to thermal stress resulting in a period of decreased Cdc42 activity and altered, monopolar growth. Cells where the heat stress-associated transcription was genetically upregulated exhibit similar growth patterning in the absence of temperature insults. We identify the Ssa2-Mas5/Hsp70-Hsp40 chaperone complex as repressor of the heat shock transcription factor Hsf1. Cells lacking this chaperone activity constitutively activate the heat-stress-associated transcriptional program. Interestingly, they also exhibit intermittent monopolar growth within a physiological temperature range and are unable to adapt to heat stress. We propose that by negatively regulating the heat stress-associated transcription, the Ssa2-Mas5 chaperone system could optimize cellular growth under different temperature regiments.


Assuntos
Polaridade Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP70/genética , Fatores de Transcrição/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Fatores de Transcrição de Choque Térmico , Temperatura Alta , Chaperonas Moleculares/genética , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Estresse Fisiológico/genética , Ativação Transcricional , Regulação para Cima
9.
PLoS Biol ; 8(10): e1000512, 2010 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-20967237

RESUMO

Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.


Assuntos
Divisão do Núcleo Celular/fisiologia , Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Fuso Acromático/metabolismo , Centrômero/metabolismo , Microtúbulos/genética , Mitose/fisiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Fuso Acromático/genética
10.
Nat Commun ; 14(1): 5544, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684233

RESUMO

Cellular metabolism relies on just a few redox cofactors. Selective compartmentalization may prevent competition between metabolic reactions requiring the same cofactor. Is such compartmentalization necessary for optimal cell function? Is there an optimal compartment size? Here we probe these fundamental questions using peroxisomal compartmentalization of the last steps of lysine and histidine biosynthesis in the fission yeast Schizosaccharomyces japonicus. We show that compartmentalization of these NAD+ dependent reactions together with a dedicated NADH/NAD+ recycling enzyme supports optimal growth when an increased demand for anabolic reactions taxes cellular redox balance. In turn, compartmentalization constrains the size of individual organelles, with larger peroxisomes accumulating all the required enzymes but unable to support both biosynthetic reactions at the same time. Our reengineering and physiological experiments indicate that compartmentalized biosynthetic reactions are sensitive to the size of the compartment, likely due to scaling-dependent changes within the system, such as enzyme packing density.


Assuntos
Bandagens , NAD , Lisina , Paclitaxel , Peroxissomos
11.
Curr Biol ; 33(11): 2175-2186.e5, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37164017

RESUMO

Most eukaryotes respire oxygen, using it to generate biomass and energy. However, a few organisms have lost the capacity to respire. Understanding how they manage biomass and energy production may illuminate the critical points at which respiration feeds into central carbon metabolism and explain possible routes to its optimization. Here, we use two related fission yeasts, Schizosaccharomyces pombe and Schizosaccharomyces japonicus, as a comparative model system. We show that although S. japonicus does not respire oxygen, unlike S. pombe, it is capable of efficient NADH oxidation, amino acid synthesis, and ATP generation. We probe possible optimization strategies through the use of stable isotope tracing metabolomics, mass isotopologue distribution analysis, genetics, and physiological experiments. S. japonicus appears to have optimized cytosolic NADH oxidation via glycerol-3-phosphate synthesis. It runs a fully bifurcated TCA pathway, sustaining amino acid production. Finally, we propose that it has optimized glycolysis to maintain high ATP/ADP ratio, in part by using the pentose phosphate pathway as a glycolytic shunt, reducing allosteric inhibition of glycolysis and supporting biomass generation. By comparing two related organisms with vastly different metabolic strategies, our work highlights the versatility and plasticity of central carbon metabolism in eukaryotes, illuminating critical adaptations supporting the preferential use of glycolysis over oxidative phosphorylation.


Assuntos
Carbono , Eucariotos , Carbono/metabolismo , Eucariotos/metabolismo , NAD/metabolismo , Metabolismo Energético , Glicólise , Aminoácidos/metabolismo , Trifosfato de Adenosina/metabolismo , Oxigênio
12.
Genetics ; 225(3)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37758508

RESUMO

Standardized nomenclature for genes, gene products, and isoforms is crucial to prevent ambiguity and enable clear communication of scientific data, facilitating efficient biocuration and data sharing. Standardized genotype nomenclature, which describes alleles present in a specific strain that differ from those in the wild-type reference strain, is equally essential to maximize research impact and ensure that results linking genotypes to phenotypes are Findable, Accessible, Interoperable, and Reusable (FAIR). In this publication, we extend the fission yeast clade gene nomenclature guidelines to support the curation efforts at PomBase (www.pombase.org), the Schizosaccharomyces pombe Model Organism Database. This update introduces nomenclature guidelines for noncoding RNA genes, following those set forth by the Human Genome Organisation Gene Nomenclature Committee. Additionally, we provide a significant update to the allele and genotype nomenclature guidelines originally published in 1987, to standardize the diverse range of genetic modifications enabled by the fission yeast genetic toolbox. These updated guidelines reflect a community consensus between numerous fission yeast researchers. Adoption of these rules will improve consistency in gene and genotype nomenclature, and facilitate machine-readability and automated entity recognition of fission yeast genes and alleles in publications or datasets. In conclusion, our updated guidelines provide a valuable resource for the fission yeast research community, promoting consistency, clarity, and FAIRness in genetic data sharing and interpretation.


Assuntos
Schizosaccharomyces , Humanos , Schizosaccharomyces/genética , Alelos , Compreensão , Bases de Dados Genéticas , Fenótipo
13.
Genetics ; 220(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35380656

RESUMO

The fission yeast Schizosaccharomyces japonicus has recently emerged as a powerful system for studying the evolution of essential cellular processes, drawing on similarities as well as key differences between S. japonicus and the related, well-established model Schizosaccharomyces pombe. We have deployed the open-source, modular code and tools originally developed for PomBase, the S. pombe model organism database (MOD), to create JaponicusDB (www.japonicusdb.org), a new MOD dedicated to S. japonicus. By providing a central resource with ready access to a growing body of experimental data, ontology-based curation, seamless browsing and querying, and the ability to integrate new data with existing knowledge, JaponicusDB supports fission yeast biologists to a far greater extent than any other source of S. japonicus data. JaponicusDB thus enables S. japonicus researchers to realize the full potential of studying a newly emerging model species and illustrates the widely applicable power and utility of harnessing reusable PomBase code to build a comprehensive, community-maintainable repository of species-relevant knowledge.


Assuntos
Schizosaccharomyces , Bases de Dados Factuais , Schizosaccharomyces/genética
14.
Curr Biol ; 18(6): R247-50, 2008 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-18364227

RESUMO

Recent studies of actomyosin-ring assembly in fission yeast have suggested that an intricate web of membrane-bound nodes containing myosin and the actin nucleator formin is pulled together into a tight ring through a 'search-and-capture' mechanism.


Assuntos
Actomiosina/metabolismo , Citocinese/fisiologia , Schizosaccharomyces
15.
Curr Opin Cell Biol ; 15(1): 82-7, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12517708

RESUMO

The cell division apparatus is assembled at different stages of the cell cycle in different eukaryotic organisms. Mechanisms exist in all organisms, however, to ensure that the cell division apparatus and the mitotic spindle are aligned perpendicular to each other. Such an alignment ensures that each daughter cell receives a nucleus and that the cell division apparatus does not cleave and destroy the genetic material. The interaction(s) of astral microtubules with the cell cortex appears to play an important role in establishing perpendicularity between chromosome segregation and cell division machinery.


Assuntos
Divisão Celular/fisiologia , Células Eucarióticas/metabolismo , Fuso Acromático/metabolismo , Animais , Segregação de Cromossomos/fisiologia , Células Eucarióticas/ultraestrutura , Humanos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Proteínas Motores Moleculares , Fuso Acromático/ultraestrutura , Leveduras/genética , Leveduras/metabolismo , Leveduras/ultraestrutura
16.
Nat Cell Biol ; 4(10): 816-20, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12360293

RESUMO

Segregating genetic material along the longest axis of the cell ensures that there is a sufficient distance between daughter chromosomes at the point of cytokinesis. Monitoring the orientation of the mitotic spindle can be subjected to cell cycle controls. In the fission yeast Schizosaccharomyces pombe, the existence of such a cell-cycle checkpoint has been proposed to delay the metaphase to anaphase transition when spindle poles are not properly oriented with respect to the actomyosin ring. Here we show, by using a fission yeast mutant compromised in its assembly of astral microtubules, that in the absence of astral microtubules short metaphase spindles are unable to orient themselves with respect to the long axis of the cell and are delayed in spindle elongation. This astral defect engages a spindle orientation checkpoint because deletion of the transcription factor Atf1, which is involved in maintaining this checkpoint, allows misaligned asterless metaphase spindles to elongate. We propose that astral microtubules are involved directly in monitoring orientation of the metaphase spindle and in controlling the timing of elongation in fission yeast.


Assuntos
Polaridade Celular/genética , Genes cdc/fisiologia , Metáfase/genética , Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Fuso Acromático/metabolismo , Compartimento Celular/genética , Proteínas de Fluorescência Verde , Proteínas Luminescentes , Microtúbulos/genética , Mutação/genética , Proteínas Recombinantes de Fusão , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Fuso Acromático/genética , Tubulina (Proteína)
17.
Curr Opin Cell Biol ; 68: 20-27, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32950004

RESUMO

Cellular dimensions profoundly influence cellular physiology. For unicellular organisms, this has direct bearing on their ecology and evolution. The morphology of a cell is governed by scaling rules. As it grows, the ratio of its surface area to volume is expected to decrease. Similarly, if environmental conditions force proliferating cells to settle on different size optima, cells of the same type may exhibit size-dependent variation in cellular processes. In fungi, algae and plants where cells are surrounded by a rigid wall, division at smaller size often produces immediate changes in geometry, decreasing cell fitness. Here, we discuss how cells interpret their size, buffer against changes in shape and, if necessary, scale their polarity to maintain optimal shape at different cell volumes.


Assuntos
Forma Celular , Tamanho Celular , Animais , Divisão Celular , Evolução Molecular , Fungos , Expressão Gênica , Humanos , Células Vegetais , Plantas , Células Procarióticas
18.
PLoS Biol ; 5(7): e170, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17579515

RESUMO

Many organisms divide chromosomes within the confines of the nuclear envelope (NE) in a process known as closed mitosis. Thus, they must ensure coordination between segregation of the genetic material and division of the NE itself. Although many years of work have led to a reasonably clear understanding of mitotic spindle function in chromosome segregation, the NE division mechanism remains obscure. Here, we show that fission yeast cells overexpressing the transforming acid coiled coil (TACC)-related protein, Mia1p/Alp7p, failed to separate the spindle pole bodies (SPBs) at the onset of mitosis, but could assemble acentrosomal bipolar and antiparallel spindle structures. Most of these cells arrested in anaphase with fully extended spindles and nonsegregated chromosomes. Spindle poles that lacked the SPBs did not lead the division of the NE during spindle elongation, but deformed it, trapping the chromosomes within. When the SPBs were severed by laser microsurgery in wild-type cells, we observed analogous deformations of the NE by elongating spindle remnants, resulting in NE division failure. Analysis of dis1Delta cells that elongate spindles despite unattached kinetochores indicated that the SPBs were required for maintaining nuclear shape at anaphase onset. Strikingly, when the NE was disassembled by utilizing a temperature-sensitive allele of the Ran GEF, Pim1p, the abnormal spindles induced by Mia1p overexpression were capable of segregating sister chromatids to daughter cells, suggesting that the failure to divide the NE prevents chromosome partitioning. Our results imply that the SPBs preclude deformation of the NE during spindle elongation and thus serve as specialized structures enabling nuclear division during closed mitosis in fission yeast.


Assuntos
Divisão do Núcleo Celular/fisiologia , Mitose/fisiologia , Membrana Nuclear/fisiologia , Schizosaccharomyces/citologia , Schizosaccharomyces/fisiologia , Fuso Acromático/fisiologia , Divisão do Núcleo Celular/genética , Cromossomos Fúngicos/genética , Genes Fúngicos , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/fisiologia , Mitose/genética , Mutação , Membrana Nuclear/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/fisiologia , Fuso Acromático/genética , Fuso Acromático/ultraestrutura
19.
Curr Biol ; 30(16): R942-R944, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32810455

RESUMO

At the end of mitosis, cells must remodel their nuclear envelope to produce two identical daughter nuclei. Two new studies using Schizosaccharomyces pombe provide insight into how compartmentalized nuclear pore complex disassembly allows cells that undergo closed mitosis to achieve nuclear division.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Mitose , Membrana Nuclear , Poro Nuclear , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
20.
Dev Cell ; 53(1): 27-41.e6, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32109380

RESUMO

Eukaryotic genomes are organized within the nucleus through interactions with inner nuclear membrane (INM) proteins. How chromatin tethering to the INM is controlled in interphase and how this process contributes to subsequent mitotic nuclear envelope (NE) remodeling remains unclear. We have probed these fundamental questions using the fission yeast Schizosaccharomyces japonicus, which breaks and reforms the NE during mitosis. We show that attachments between heterochromatin and the transmembrane Lem2-Nur1 complex at the INM are remodeled in interphase by the ESCRT-III/Vps4 machinery. Failure of ESCRT-III/Vps4 to release Lem2-Nur1 from heterochromatin leads to persistent association of chromosomes with the INM throughout mitosis. At mitotic exit, such trapping of Lem2-Nur1 on heterochromatin prevents it from re-establishing nucleocytoplasmic compartmentalization. Our work identifies the Lem2-Nur1 complex as a substrate for the nuclear ESCRT machinery and explains how the dynamic tethering of chromosomes to the INM is linked to the establishment of nuclear compartmentalization.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Heterocromatina/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Cromatina/metabolismo , Proteínas de Membrana/metabolismo , Mitose/fisiologia , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA