Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Fungal Genet Biol ; 175: 103937, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39396739

RESUMO

Diplodia sapinea is the causal agent of Diplodia shoot blight, an emerging disease affecting pine forests worldwide. The range expansion of this pathogen in northern Europe has been suggested to be partially facilitated by recent warmer conditions. Although D. sapinea has been studied extensively, critical aspects of its infection biology and population structure remain unexplored. In this study, we developed nine simple sequence repeat (SSR) markers mined from D. sapinea genomes to assess the genetic diversity at higher resolution. Isolates from northern Spain, an area formerly regarded as having low genetic diversity and samples from a Californian population that was formerly regarded as clonal, were analysed in the study. In Spain, the nine SSR markers identified 56 genotypes in 285 samples. Isolates from symptomatic shoots, cones and asymptomatic tissues collected from different stands, suggested admixture between local populations. The same genotype tended to dominate within a single cone, and the same genotypes were usually found in both symptomatic and asymptomatic shoot tissues. The nine new SSR markers developed in this study revealed a high level of genetic diversity in both the northern Spanish and northern Californian populations than previously anticipated. Analyses using these nine SSR markers should contribute to a better understanding of the epidemiology, evolution and origin of D. sapinea, a pathogen that is gaining prominence in many parts of the world.

2.
Environ Microbiol ; 24(8): 3640-3654, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35315253

RESUMO

The factors shaping the composition of the tree mycobiome are still under investigation. We tested the effects of host genotype, site, host phenotypic traits, and air fungal spore communities on the assembly of the fungi inhabiting Norway spruce needles. We used Norway spruce clones and spore traps within the collection sites and characterized both needle and air mycobiome communities by high-throughput sequencing of the ITS2 region. The composition of the needle mycobiome differed between Norway spruce clones, and clones with high genetic similarity had a more similar mycobiome. The needle mycobiome also varied across sites and was associated with the composition of the local air mycobiome and climate. Phenotypic traits such as diameter at breast height or crown health influenced the needle mycobiome to a lesser extent than host genotype and air mycobiome. Altogether, our results suggest that the needle mycobiome is mainly driven by the host genotype in combination with the composition of the local air spore communities. Our work highlights the role of host intraspecific variation in shaping the mycobiome of trees and provides new insights on the ecological processes structuring fungal communities inhabiting woody plants.


Assuntos
Micobioma , Picea , Fungos/genética , Genótipo , Micobioma/genética , Picea/genética , Picea/microbiologia , Esporos Fúngicos/genética , Árvores/microbiologia
3.
Plant Cell Environ ; 45(8): 2292-2305, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35598958

RESUMO

Pathogenic diseases frequently occur in drought-stressed trees. However, their contribution to the process of drought-induced mortality is poorly understood. We combined drought and stem inoculation treatments to study the physiological processes leading to drought-induced mortality in Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) saplings infected with Heterobasidion annosum s.s. We analysed the saplings' water status, gas exchange, nonstructural carbohydrates (NSCs) and defence responses, and how they related to mortality. Saplings were followed for two growing seasons, including an artificially induced 3-month dormancy period. The combined drought and pathogen treatment significantly increased spruce mortality; however, no interaction between these stressors was observed in pine, although individually each stressor caused mortality. Our results suggest that pathogen infection decreased carbon reserves in spruce, reducing the capacity of saplings to cope with drought, resulting in increased mortality rates. Defoliation, relative water content and the starch concentration of needles were predictors of mortality in both species under drought and pathogen infection. Infection and drought stress create conflicting needs for carbon to compartmentalize the pathogen and to avoid turgor loss, respectively. Heterobasidion annosum reduces the functional sapwood area and shifts NSC allocation patterns, reducing the capacity of trees to cope with drought.


Assuntos
Picea , Pinus sylvestris , Pinus , Basidiomycota , Carbono , Secas , Picea/fisiologia , Pinus sylvestris/fisiologia , Folhas de Planta/fisiologia , Árvores , Água/fisiologia
4.
Phytopathology ; 110(2): 517-525, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31552784

RESUMO

Predicting whether naïve tree populations have the potential to adapt to exotic pathogens is necessary owing to the increasing rate of invasions. Adaptation may occur as a result of natural selection when heritable variation in terms of susceptibility exists in the naïve population. We searched for signs of selection on black alder (Alnus glutinosa) stands growing on riverbanks invaded by two pathogens differing in aggressiveness, namely, Phytophthora uniformis (PU) and Phytophthora × alni (PA). We compared the survival and heritability measures from 72 families originating from six invaded and uninvaded (naïve) sites by performing in vitro inoculations. The results from the inoculations were used to assess the relative contribution of host genetic variation on natural selection. We found putative signs of natural selection on alder exerted by PU but not by PA. For PU, we found a higher survival in families originating from invaded sites compared with uninvaded sites. The narrow sense heritability of susceptibility to PU of uninvaded populations was significantly higher than to PA. Simulated data supported the role of heritable genetic variation on natural selection and discarded a high aggressiveness of PA decreasing the transmission rate as an alternative hypothesis for a slow natural selection. Our findings expand on previous attempts of using heritability as a predictor for the likelihood of natural adaptation of naïve tree populations to invasive pathogens. Measures of genetic variation can be useful for risk assessment purposes or when managing Phytophthora invasions.


Assuntos
Alnus , Phytophthora , Florestas , Variação Genética , Doenças das Plantas
5.
Phytopathology ; 110(12): 1959-1969, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32633698

RESUMO

In pathogenic fungi and oomycetes, interspecific hybridization may lead to the formation of new species having a greater impact on natural ecosystems than the parental species. From the early 1990s, a severe alder (Alnus spp.) decline due to an unknown Phytophthora species was observed in several European countries. Genetic analyses revealed that the disease was caused by the triploid hybrid P. × alni, which originated in Europe from the hybridization of P. uniformis and P. × multiformis. Here, we investigated the population structure of P. × alni (158 isolates) and P. uniformis (85 isolates) in several European countries using microsatellite markers. Our analyses confirmed the genetic structure previously observed in other European populations, with P. uniformis populations consisting of at most two multilocus genotypes (MLGs) and P. × alni populations dominated by MLG Pxa-1. The genetic structure of P. × alni populations in the Czech Republic, Hungary and Sweden seemed to reflect the physical isolation of river systems. Most rare P. × alni MLGs showed a loss of heterozygosity (LOH) at one or a few microsatellite loci compared with other MLGs. This LOH may allow a stabilization within the P. × alni genome or a rapid adaptation to stress situations. Alternatively, alleles may be lost because of random genetic drift in small, isolated populations, with no effect on fitness of P. × alni. Additional studies would be necessary to confirm these patterns of population diversification and to better understand the factors driving it.


Assuntos
Phytophthora , Ecossistema , Europa (Continente) , Variação Genética , Genótipo , Repetições de Microssatélites/genética , Phytophthora/genética , Doenças das Plantas , Suécia
6.
Appl Environ Microbiol ; 83(13)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28432095

RESUMO

Obtaining reliable and representative mushroom production data requires time-consuming sampling schemes. In this paper, we assessed a simple methodology to detect mushroom emergence by trapping the fungal spores of the fruiting body community in plots where mushroom production was determined weekly. We compared the performance of filter paper traps with that of funnel traps and combined these spore trapping methods with species-specific quantitative real-time PCR and Illumina MiSeq to determine the spore abundance. Significantly more MiSeq proportional reads were generated for both ectomycorrhizal and saprotrophic fungal species using filter traps than were obtained using funnel traps. The spores of 37 fungal species that produced fruiting bodies in the study plots were identified. Spore community composition changed considerably over time due to the emergence of ephemeral fruiting bodies and rapid spore deposition (lasting from 1 to 2 weeks), which occurred in the absence of rainfall events. For many species, the emergence of epigeous fruiting bodies was followed by a peak in the relative abundance of their airborne spores. There were significant positive relationships between fruiting body yields and spore abundance in time for five of seven fungal species. There was no relationship between fruiting body yields and their spore abundance at plot level, indicating that some of the spores captured in each plot were arriving from the surrounding areas. Differences in fungal detection capacity by spore trapping may indicate different dispersal ability between fungal species. Further research can help to identify the spore rain patterns for most common fungal species.IMPORTANCE Mushroom monitoring represents a serious challenge in economic and logistical terms because sampling approaches demand extensive field work at both the spatial and temporal scales. In addition, the identification of fungal taxa depends on the expertise of experienced fungal taxonomists. Similarly, the study of fungal dispersal has been constrained by technological limitations, especially because the morphological identification of spores is a challenging and time-consuming task. Here, we demonstrate that spores from ectomycorrhizal and saprotrophic fungal species can be identified using simple spore traps together with either MiSeq fungus-specific amplicon sequencing or species-specific quantitative real-time PCR. In addition, the proposed methodology can be used to characterize the airborne fungal community and to detect mushroom emergence in forest ecosystems.


Assuntos
Agaricales/isolamento & purificação , Técnicas de Tipagem Micológica/métodos , Esporos Fúngicos/isolamento & purificação , Agaricales/classificação , Agaricales/genética , Agaricales/crescimento & desenvolvimento , Carpóforos/classificação , Carpóforos/genética , Carpóforos/crescimento & desenvolvimento , Carpóforos/isolamento & purificação , Técnicas de Tipagem Micológica/instrumentação , Reação em Cadeia da Polimerase em Tempo Real , Microbiologia do Solo , Esporos Fúngicos/classificação , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento
7.
Phytopathology ; 105(9): 1191-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25822186

RESUMO

During the last century, the number of forest pathogen invasions has increased substantially. Environmental variables can play a crucial role in determining the establishment of invasive species. The objective of the present work was to determine the correlation between winter climatic conditions and distribution of two subspecies of the invasive forest pathogen Phytophthora alni: P. alni subspp. alni and uniformis killing black alder (Alnus glutinosa) in southern Sweden. It is known from laboratory experiments that P. alni subsp. alni is more pathogenic than P. alni subsp. uniformis, and that P. alni subsp. alni is sensitive to low temperatures and long frost periods. By studying the distribution of these two subspecies at the northern limit of the host species, we could investigate whether winter conditions can affect the geographical distribution of P. alni subsp. alni spreading northward. Sixteen major river systems of southern Sweden were systematically surveyed and isolations were performed from active cankers. The distribution of the two studied subspecies was highly correlated with winter temperature and duration of periods with heavy frost. While P. alni subsp. uniformis covered the whole range of temperatures of the host, P. alni subsp. alni was recovered in areas subjected to milder winter temperatures and shorter frost periods. Our observations suggest that winter conditions can play an important role in limiting P. alni subsp. alni establishment in cold locations, thus affecting the distribution of the different subspecies of P. alni in boreal regions.


Assuntos
Alnus/microbiologia , Phytophthora/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Estações do Ano , Suécia , Temperatura
8.
Proc Biol Sci ; 281(1786)2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24850920

RESUMO

A heterokaryon is a tissue type composed of cells containing genetically different nuclei. Although heterokaryosis is commonly found in nature, an understanding of the evolutionary implications of this phenomenon is largely lacking. Here, we use the filamentous ascomycete Neurospora tetrasperma to study the interplay between nuclei in heterokaryons across vegetative and sexual developmental stages. This fungus harbours nuclei of two opposite mating types (mat A and mat a) in the same cell and is thereby self-fertile. We used pyrosequencing of mat-linked SNPs of three heterokaryons to demonstrate that the nuclear ratio is consistently biased for mat A-nuclei during mycelial growth (mean mat A/mat a ratio 87%), but evens out during sexual development (ratio ranging from 40 to 57%). Furthermore, we investigated the association between nuclear ratio and expression of alleles of mat-linked genes and found that expression is coregulated to obtain a tissue-specific bias in expression ratio: during mycelial extension, we found a strong bias in expression for mat A-linked genes, that was independent of nuclear ratio, whereas at the sexual stage we found an expression bias for genes of the mat a nuclei. Taken together, our data indicate that nuclei cooperate to optimize the fitness of the heterokaryon, via both altering their nuclear ratios and coregulation genes expressed in the different nuclei.


Assuntos
Proteínas Fúngicas/genética , Genes Fúngicos Tipo Acasalamento , Neurospora/genética , Evolução Biológica , Proteínas Fúngicas/metabolismo , Micélio/genética , Micélio/metabolismo , Neurospora/metabolismo , Reação em Cadeia da Polimerase
9.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366172

RESUMO

Climate shapes the distribution of plant-associated microbes such as mycorrhizal and endophytic fungi. However, the role of climate in plant pathogen community assembly is less understood. Here, we explored the role of climate in the assembly of Phytophthora communities at >250 sites along a latitudinal gradient from Spain to northern Sweden and an altitudinal gradient from the Spanish Pyrenees to lowland areas. Communities were detected by ITS sequencing of river filtrates. Mediation analysis supported the role of climate in the biogeography of Phytophthora and ruled out other environmental factors such as geography or tree diversity. Comparisons of functional and species diversity showed that environmental filtering dominated over competitive exclusion in Europe. Temperature and precipitation acted as environmental filters at different extremes of the gradients. In northern regions, winter temperatures acted as an environmental filter on Phytophthora community assembly, selecting species adapted to survive low minimum temperatures. In southern latitudes, a hot dry climate was the main environmental filter, resulting in communities dominated by drought-tolerant Phytophthora species with thick oospore walls, a high optimum temperature for growth, and a high maximum temperature limit for growth. By taking a community ecology approach, we show that the establishment of Phytophthora plant pathogens in Europe is mainly restricted by cold temperatures.


Assuntos
Clima , Plantas , Temperatura , Estações do Ano , Europa (Continente) , Mudança Climática
10.
Mol Plant Pathol ; 25(4): e13450, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590129

RESUMO

Phytophthora pseudosyringae is a self-fertile pathogen of woody plants, particularly associated with tree species from the genera Fagus, Notholithocarpus, Nothofagus and Quercus, which is found across Europe and in parts of North America and Chile. It can behave as a soil pathogen infecting roots and the stem collar region, as well as an aerial pathogen infecting leaves, twigs and stem barks, causing particular damage in the United Kingdom and western North America. The population structure, migration and potential outcrossing of a worldwide collection of isolates were investigated using genotyping-by-sequencing. Coalescent-based migration analysis revealed that the North American population originated from Europe. Historical gene flow has occurred between the continents in both directions to some extent, yet contemporary migration is overwhelmingly from Europe to North America. Two broad population clusters dominate the global population of the pathogen, with a subgroup derived from one of the main clusters found only in western North America. Index of association and network analyses indicate an influential level of outcrossing has occurred in this preferentially inbreeding, homothallic oomycete. Outcrossing between the two main population clusters has created distinct subgroups of admixed individuals that are, however, less common than the main population clusters. Differences in life history traits between the two main population clusters should be further investigated together with virulence and host range tests to evaluate the risk each population poses to natural environments worldwide.


Assuntos
Phytophthora , Humanos , Filogeografia , Phytophthora/genética , Doenças das Plantas , Plantas , Árvores
11.
Sci Total Environ ; 947: 173619, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38825208

RESUMO

The globalization in plant material trading has caused the emergence of invasive pests in many ecosystems, such as the alder pathogen Phytophthora ×alni in European riparian forests. Due to the ecological importance of alder to the functioning of rivers and the increasing incidence of P. ×alni-induced alder decline, effective and accessible decision tools are required to help managers and stakeholders control the disease. This study proposes a Bayesian belief network methodology to integrate diverse information on the factors affecting the survival and infection ability of P. ×alni in riparian habitats to help predict and manage disease incidence. The resulting Alder Decline Network (ADnet) management tool integrates information about alder decline from scientific literature, expert knowledge and empirical data. Expert knowledge was gathered through elicitation techniques that included 19 experts from 12 institutions and 8 countries. An original dataset was created covering 1189 European locations, from which P. ×alni occurrence was modeled based on bioclimatic variables. ADnet uncertainty was evaluated through its sensitivity to changes in states and three scenario analyses. The ADnet tool indicated that mild temperatures and high precipitation are key factors favoring pathogen survival. Flood timing, water velocity, and soil type have the strongest influence on disease incidence. ADnet can support ecosystem management decisions and knowledge transfer to address P. ×alni-induced alder decline at local or regional levels across Europe. Management actions such as avoiding the planting of potentially infected trees or removing man-made structures that increase the flooding period in disease-affected sites could decrease the incidence of alder disease in riparian forests and limit its spread. The coverage of the ADnet tool can be expanded by updating data on the pathogen's occurrence, particularly from its distributional limits. Research on the role of genetic variability in alder susceptibility and pathogen virulence may also help improve future ADnet versions.


Assuntos
Alnus , Teorema de Bayes , Doenças das Plantas/microbiologia , Doenças das Plantas/estatística & dados numéricos , Phytophthora , Ecossistema , Europa (Continente)/epidemiologia , Florestas , Conservação dos Recursos Naturais
12.
J Fungi (Basel) ; 9(9)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37755034

RESUMO

This study aimed to determine the differences and drivers of oomycete diversity and community composition in alder- and birch-dominated park and natural forest soils of the Fennoscandian and Baltic countries of Estonia, Finland, Lithuania, Norway, and Sweden. For this, we sequenced libraries of PCR products generated from the DNA of 111 soil samples collected across a climate gradient using oomycete-specific primers on a PacBio high-throughput sequencing platform. We found that oomycete communities are most affected by temperature seasonality, annual mean temperature, and mean temperature of the warmest quarter. Differences in composition were partly explained by the higher diversity of Saprolegniales in Sweden and Norway, as both total oomycete and Saprolegniales richness decreased significantly at higher longitudes, potentially indicating the preference of this group of oomycetes for a more temperate maritime climate. None of the evaluated climatic variables significantly affected the richness of Pythiales or Peronosporales. Interestingly, the relative abundance and richness of Pythiales was higher at urban sites compared to forest sites, whereas the opposite was true for Saprolegniales. Additionally, this is the first report of Phytophthora gallica and P. plurivora in Estonia. Our results indicate that the composition of oomycetes in soils is strongly influenced by climatic factors, and, therefore, changes in climate conditions associated with global warming may have the potential to significantly alter the distribution range of these microbes, which comprise many important pathogens of plants.

13.
J Fungi (Basel) ; 8(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35049987

RESUMO

Grapevine trunk diseases (GTDs) are caused by cryptic complexes of fungal pathogens and have become a growing problem for new grapevine (Vitis vinifera) plantations. We studied the role of the nursery, variety, and rootstock in the composition of the fungal communities in root collars and graft unions of planting material in Catalonia (NE Spain). We compared necrosis and fungal communities in graft unions and root collars at harvest, and then after three months of cold storage. We evaluated combinations of eleven red and five white varieties with four common rootstocks coming from six nurseries. Fungal communities were characterized by isolation and metabarcoding of the ITS2 region. Our data suggests that nursery followed by rootstock and variety had significant effects on necrosis and fungal community structure in graft and root tissues. Within the plant, we found large differences in terms fungal community distribution between graft and root tissues. Graft unions housed a significantly higher relative abundance of GTD-related Operational Taxonomic Units (OTUs) than root collars. More severe necrosis was correlated with a lower relative abundance of GTD-related OTUs based on isolation and metabarcoding analyses. Our results suggest that nurseries and therefore their plant production practices play a major role in determining the fungal and GTD-related fungal community in grapevine plants sold for planting. GTD variation across rootstocks and varieties could be explored as a venue for minimizing pathogen load in young plantations.

14.
J Fungi (Basel) ; 8(5)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35628741

RESUMO

The effective management of grapevine trunk diseases (GTDs) is an ongoing challenge. Hot water treatment (HWT) is an environmentally friendly and economically viable option; however, the short-term effects of HWT on grapevine (Vitis vinifera L.) health and production are not fully understood. The aim of this study was to compare the effects of HWT on plant growth and fungal community structure in nursery stock until plants were completely established in the field. We assessed eleven graft and three rootstock varieties from four local nurseries in a region of Catalonia (NE Spain) where GTDs are a serious threat. After treatment, the plants were left to grow under field conditions for two growing seasons. Metabarcoding of the ITS region was used to study the mycobiomes of plant graft unions and root collars. We also assessed the influence of plant physiological indicators in community composition. Hot water treatment caused lasting changes in GTD communities in both the root collar and graft union that were not always characterized as a reduction of GTD-related fungi. However, HWT reduced the relative abundance of some serious GTD-associated pathogens such as Cadophora luteo-olivacea in graft tissues, and Phaeomoniella chlamydospora and Neofusicoccum parvum in the root collar. Treatment had the greatest influence on the total and GTD-related fungal communities of Chardonnay and Xarel·lo, respectively. Total community variation was driven by treatment and nursery in rootstocks, whereas HWT most significantly affected the GTD community composition in R-110 rootstock. In conclusion, changes in fungal abundance were species-specific and mostly dependent on the plant tissue type; however, HWT did reduce plant biomass accumulation in the short-term.

15.
J Fungi (Basel) ; 7(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546355

RESUMO

Halophytophthora species have been traditionally regarded as brackish water oomycetes; however, recent reports in inland freshwater call for a better understanding of their ecology and possible pathogenicity. We studied the distribution of Halophytophthora fluviatilis in 117 forest streams by metabarcoding river filtrates taken in spring and autumn and by direct isolation from floating leaves. Pathogenicity on six Fagaceae species and Alnus glutinosa was assessed by stem inoculations. The distribution of H. fluviatilis was correlated with high mean annual temperatures (>93.5% of reports in Ta > 12.2 °C) and low precipitation records. H. fluviatilis was therefore widely distributed in forest streams in a warm-dry climate, but it was mostly absent in subalpine streams. H. fluviatilis was primarily detected in autumn with few findings in spring (28.4% vs. 2.7% of streams). H. fluviatilis was able to cause small lesions on some tree species such as Quercus pubescens, Q. suber and A. glutinosa. Our findings suggest that H. fluviatilis may be adapted to warm and dry conditions, and that it does not pose a significant threat to the most common Mediterranean broadleaved trees.

16.
Annu Rev Phytopathol ; 58: 343-361, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32396761

RESUMO

Global change is pressing forest pathologists to solve increasingly complex problems. We argue that understanding interactive effects between forest pathogens and global warming, globalization, and land-use changes may benefit from a functional ecology mindset. Traits can be more informative about ecological functions than species inventories and may deliver a more mechanistic description of forest disease. Myriad microbes with pathogenic potential interact with forest ecosystems at different organizational levels. Elucidation of functional traits may enable the microbial complexity to be reduced into manageable categories with predictive power. In this review, we propose guidelines that allow the research community to develop a functional forest pathology approach. We suggest new angles by which functional questions can be used to resolve burning issues on tree disease. Building up functional databases for pathogenicity is key to implementing these approaches.


Assuntos
Ecossistema , Árvores , Ecologia
17.
FEMS Microbiol Ecol ; 96(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32356889

RESUMO

Predicting fungal community assembly is partly limited by our understanding of the factors driving the composition of deposited spores. We studied the relative contribution of vegetation, geographical distance, seasonality and weather to fungal spore deposition across three vegetation types. Active and passive spore traps were established in agricultural fields, deciduous forests and coniferous forests across a geographic gradient of ∼600 km. Active traps captured the spore community suspended in air, reflecting the potential deposition, whereas passive traps reflected realized deposition. Fungal species were identified by metabarcoding of the ITS2 region. The composition of spore communities captured by passive traps differed more between vegetation types than across regions separated by >100 km, indicating that vegetation type was the strongest driver of composition of deposited spores. By contrast, vegetation contributed less to potential deposition, which followed a seasonal pattern. Within the same site, the spore communities captured by active traps differed from those captured by passive traps. Realized deposition tended to be dominated by spores of species related to vegetation. Temperature was negatively correlated with the fungal species richness of both potential and realized deposition. Our results indicate that vegetation may be able to maintain similar fungal communities across distances, and likely be the driving factor of fungal spore deposition at landscape level.


Assuntos
Florestas , Micobioma , Agricultura , Fungos/genética , Esporos Fúngicos
18.
Tree Physiol ; 40(12): 1712-1725, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-32785638

RESUMO

Insect outbreaks of increasing frequency and severity in forests are predicted due to climate change. Insect herbivory is known to promote physiological changes in forest trees. However, little is known about whether these plant phenotypic adjustments have cascading effects on tree microbial symbionts such as fungi in roots and foliage. We studied the impact of defoliation by the pine processionary moth in two infested Pinus nigra forests through a multilevel sampling of defoliated and non-defoliated trees. We measured tree growth, nutritional status and carbon allocation to chemical defenses. Simultaneously, we analysed the putative impact of defoliation on the needle endophytes and on the soil fungal communities. Higher concentrations of chemical defenses were found in defoliated trees, likely as a response to defoliation; however, no differences in non-structural carbohydrate reserves were found. In parallel to the reductions in tree growth and changes in chemical defenses, we observed shifts in the composition of needle endophytic and soil fungal communities in defoliated trees. Defoliated trees consistently corresponded with a lower biomass of ectomycorrhizal fungi in both sites, and a higher alpha diversity and greater relative abundance of belowground saprotrophs and pathogens. However, ectomycorrhizal alpha diversity was similar between non-defoliated and defoliated trees. Specific needle endophytes in old needles were strongly associated with non-defoliated trees. The potential role of these endophytic fungi in pine resistance should be further investigated. Our study suggests that lower biomass of ectomycorrhizal fungi in defoliated trees might slow down tree recovery since fungal shifts might affect tree-mycorrhizal feedbacks and can potentially influence carbon and nitrogen cycling in forest soils.


Assuntos
Micorrizas , Animais , Biomassa , Agulhas , Folhas de Planta , Solo , Microbiologia do Solo , Árvores
19.
Sci Rep ; 10(1): 5310, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210276

RESUMO

Determining the impacts of invasive pathogens on tree mortality and growth is a difficult task, in particular in the case of species occurring naturally at low frequencies in mixed stands. In this study, we quantify such effects by comparing national forest inventory data collected before and after pathogen invasion. In Norway, Fraxinus excelsior is a minor species representing less than 1% of the trees in the forests and being attacked by the invasive pathogen Hymenoscyphus fraxineus since 2006. By studying deviations between inventories, we estimated a 74% higher-than-expected average ash mortality and a 13% slower-than-expected growth of the surviving ash trees, indicating a lack of compensation by the remaining ash. We could confidently assign mortality and growth losses to ash dieback as no mortality or growth shifts were observed for co-occurring tree species in the same plots. The mortality comparisons also show regional patterns with higher mortality in areas with the longest disease history in Norway. Considering that ash is currently mostly growing in mixed forests and that no signs of compensation were observed by the surviving ash trees, a significant habitat loss and niche replacement could be anticipated in the mid-term.


Assuntos
Ascomicetos/patogenicidade , Fraxinus/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Árvores/crescimento & desenvolvimento , Virulência , Biodiversidade , Fraxinus/microbiologia , Árvores/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA