RESUMO
The lactic acid bacterium Streptococcus thermophilus was believed to display only two distinct proteases at the cell surface, namely, the cell envelope protease PrtS and the housekeeping protease HtrA. Using peptidomics, we demonstrate here the existence of an additional active cell surface protease, which shares significant homology with the SepM protease of Streptococcus mutans. Although all three proteases-PrtS, HtrA, and SepM-are involved in the turnover of surface proteins, they demonstrate distinct substrate specificities. In particular, SepM cleaves proteins involved in cell wall metabolism and cell elongation, and its inactivation has consequences for cell morphology. When all three proteases are inactivated, the residual cell-surface proteolysis of S. thermophilus is approximately 5% of that of the wild-type strain. IMPORTANCE Streptococcus thermophilus is a lactic acid bacterium used widely as a starter in the dairy industry. Due to its "generally recognized as safe" status and its weak cell surface proteolytic activity, it is also considered a potential bacterial vector for heterologous protein production. Our identification of a new cell surface protease made it possible to construct a mutant strain with a 95% reduction in surface proteolysis, which could be useful in numerous biotechnological applications.
Assuntos
Proteínas de Bactérias/genética , Peptídeo Hidrolases , Streptococcus thermophilus , Peptídeo Hidrolases/genética , Proteólise , Streptococcus thermophilus/enzimologia , Streptococcus thermophilus/genéticaRESUMO
The haploid-diploid life cycle of the filamentous brown alga Ectocarpus involves alternation between two independent and morphologically distinct multicellular generations, the sporophyte and the gametophyte. Deployment of the sporophyte developmental program requires two TALE homeodomain transcription factors OUROBOROS and SAMSARA. In addition, the sporophyte generation has been shown to secrete a diffusible factor that can induce uni-spores to switch from the gametophyte to the sporophyte developmental program. Here, we determine optimal conditions for production, storage, and detection of this diffusible factor and show that it is a heat-resistant, high molecular weight molecule. Based on a combined approach involving proteomic analysis of sporophyte-conditioned medium and the use of biochemical tools to characterize arabinogalactan proteins, we present evidence that sporophyte-conditioned medium contains AGP epitopes and suggest that the diffusible factor may belong to this family of glycoproteins.
Assuntos
Células Germinativas Vegetais , Phaeophyceae , Haploidia , Plantas , ProteômicaRESUMO
Fomitiporia mediterranea M. Fischer (Fmed) is a white-rot wood-decaying fungus associated with one of the most important and challenging diseases in vineyards: Esca. To relieve microbial degradation, woody plants, including Vitis vinifera, use structural and chemical weapons. Lignin is the most recalcitrant of the wood cell wall structural compounds and contributes to wood durability. Extractives are constitutive or de novo synthesized specialized metabolites that are not covalently bound to wood cell walls and are often associated with antimicrobial properties. Fmed is able to mineralize lignin and detoxify toxic wood extractives, thanks to enzymes such as laccases and peroxidases. Grapevine wood's chemical composition could be involved in Fmed's adaptation to its substrate. This study aimed at deciphering if Fmed uses specific mechanisms to degrade grapevine wood structure and extractives. Three different wood species, grapevine, beech, and oak. were exposed to fungal degradation by two Fmed strains. The well-studied white-rot fungus Trametes versicolor (Tver) was used as a comparison model. A simultaneous degradation pattern was shown for Fmed in the three degraded wood species. Wood mass loss after 7 months for the two fungal species was the highest with low-density oak wood. For the latter wood species, radical differences in initial wood density were observed. No differences between grapevine or beech wood degradation rates were observed after degradation by Fmed or by Tver. Contrary to the Tver secretome, one manganese peroxidase isoform (MnP2l, jgi protein ID 145801) was the most abundant in the Fmed secretome on grapevine wood only. Non-targeted metabolomic analysis was conducted on wood and mycelium samples, using metabolomic networking and public databases (GNPS, MS-DIAL) for metabolite annotations. Chemical differences between non-degraded and degraded woods, and between mycelia grown on different wood species, are discussed. This study highlights Fmed physiological, proteomic and metabolomic traits during wood degradation and thus contributes to a better understanding of its wood degradation mechanisms.
RESUMO
Bacillus strains from the Moroccan Coordinated Collections of Microorganisms (CCMM) were characterised and tested for fibrolytic function and safety properties that would be beneficial for maintaining intestinal homeostasis, and recommend beneficial microbes in the field of health promotion research. Forty strains were investigated for their fibrolytic activities towards complex purified polysaccharides and natural fibres representative of dietary fibres (DFs) entering the colon for digestion. We demonstrated hemicellulolytic activities for nine strains of Bacillus aerius, re-identified as Bacillus paralicheniformis and Bacillus licheniformis, using xylan, xyloglucan or lichenan as purified polysaccharides, and orange, apple and carrot natural fibres, with strain- and substrate-dependent production of glycoside hydrolases (GHs). Our combined methods, based on enzymatic assays, secretome, and genome analyses, highlighted the hemicellulolytic activities of B. paralicheniformis and the secretion of specific glycoside hydrolases, in particular xylanases, compared to B. licheniformis. Genomic features of these strains revealed a complete set of GH genes dedicated to the degradation of various polysaccharides from DFs, including cellulose, hemicellulose and pectin, which may confer on the strains the ability to digest a variety of DFs. Preliminary experiments on the safety and immunomodulatory properties of B. paralicheniformis fibrolytic strains were evaluated in light of applications as beneficial microbes' candidates for health improvement. B. paralicheniformis CCMM B969 was therefore proposed as a new fibrolytic beneficial microbe candidate.
Assuntos
Bacillus licheniformis , Bacillus , Bacillus/genética , Bacillus licheniformis/genética , Polissacarídeos/metabolismo , Glicosídeo Hidrolases/metabolismoRESUMO
Pea protein isolates are a source of high-quality plant proteins. However, from a sensory perspective, they are usually described as having strong beany and bitter notes, which arise from a complex mixture of volatiles, phytochemicals, and peptides. The aim of this study was to identify the main peptides in isolates and examine their correlations with sensory perceptions. Thus, 28 solutions containing different mixtures of pea protein fractions were assessed. Any peptides present were identified and characterized using ultra high-performance liquid chromatography-mass spectrometry. There were a total of 3,005 unique peptides representing various protein families; 1,640 and 275 peptides were correlated with broth and bitter attributes, respectively. In particular, 14 peptides with short sequences (<8 residues) were correlated with bitterness. These results show how key peptides in isolates may cause sensory perceptions.
Assuntos
Proteínas de Ervilha , Cromatografia Líquida de Alta Pressão , Biologia Computacional , Humanos , Espectrometria de Massas , PeptídeosRESUMO
The ability of Trichoderma reesei, a fungus widely used for the commercial production of hemicellulases and cellulases, to grow and modify technical soda lignin was investigated. By quantifying fungal genomic DNA, T. reesei showed growth and sporulation in solid and liquid cultures containing lignin alone. The analysis of released soluble lignin and residual insoluble lignin was indicative of enzymatic oxidative conversion of phenolic lignin side chains and the modification of lignin structure by cleaving the ß-O-4 linkages. The results also showed that polymerization reactions were taking place. A proteomic analysis conducted to investigate secreted proteins at days 3, 7, and 14 of growth revealed the presence of five auxiliary activity (AA) enzymes in the secretome: AA6, AA9, two AA3 enzymes), and the only copper radical oxidase encoded in the genome of T. reesei. This enzyme was heterologously produced and characterized, and its activity on lignin-derived molecules was investigated. Phylogenetic characterization demonstrated that this enzyme belonged to the AA5_1 family, which includes characterized glyoxal oxidases. However, the enzyme displayed overlapping physicochemical and catalytic properties across the AA5 family. The enzyme was remarkably stable at high pH and oxidized both, alcohols and aldehydes with preference to the alcohol group. It was also active on lignin-derived phenolic molecules as well as simple carbohydrates. HPSEC and LC-MS analyses on the reactions of the produced protein on lignin dimers (SS ßß, SS ßO4 and GG ß5) uncovered the polymerizing activity of this enzyme, which was accordingly named lignin copper oxidase (TrLOx). Polymers of up 10 units were formed by hydroxy group oxidation and radical formation. The activations of lignin molecules by TrLOx along with the co-secretion of this enzyme with reductases and FAD flavoproteins oxidoreductases during growth on lignin suggest a synergistic mechanism for lignin breakdown.
RESUMO
Technical lignins produced as a by-product in biorefinery processes represent a potential source of renewable carbon. In consideration of the possibilities of the industrial transformation of this substrate into various valuable bio-based molecules, the biological deconstruction of a technical soda lignin by filamentous fungi was investigated. The ability of three basidiomycetes (Polyporus brumalis, Pycnoporus sanguineus and Leiotrametes menziesii) to modify this material, the resultant structural and chemical changes, and the secreted proteins during growth on this substrate were investigated. The three fungi could grow on the technical lignin alone, and the growth rate increased when the media were supplemented with glucose or maltose. The proteomic analysis of the culture supernatants after three days of growth revealed the secretion of numerous Carbohydrate-Active Enzymes (CAZymes). The secretomic profiles varied widely between the strains and the presence of technical lignin alone triggered the early secretion of many lignin-acting oxidoreductases. The secretomes were notably rich in glycoside hydrolases and H2O2-producing auxiliary activity enzymes with copper radical oxidases being induced on lignin for all strains. The lignin treatment by fungi modified both the soluble and insoluble lignin fractions. A significant decrease in the amount of soluble higher molar mass compounds was observed in the case of P. sanguineus. This strain was also responsible for the modification of the lower molar mass compounds of the lignin insoluble fraction and a 40% decrease in the thioacidolysis yield. The similarity in the activities of P. sanguineus and P. brumalis in modifying the functional groups of the technical lignin were observed, the results suggest that the lignin has undergone structural changes, or at least changes in its composition, and pave the route for the utilization of filamentous fungi to functionalize technical lignins and produce the enzymes of interest for biorefinery applications.