Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Antimicrob Chemother ; 75(4): 936-941, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31904836

RESUMO

OBJECTIVES: Eumycetoma is currently treated with a combination of itraconazole therapy and surgery, with limited success. Recently, olorofim, the lead candidate of the orotomides, a novel class of antifungal agents, entered a Phase II trial for the treatment of invasive fungal infections. Here we determined the activity of olorofim against Madurella mycetomatis, the main causative agent of eumycetoma. METHODS: Activity of olorofim against M. mycetomatis was determined by in silico comparison of the target gene, dihydroorotate dehydrogenase (DHODH), and in vitro susceptibility testing. We also investigated the in vitro interaction between olorofim and itraconazole against M. mycetomatis. RESULTS: M. mycetomatis and Aspergillus fumigatus share six out of seven predicted binding residues in their DHODH DNA sequence, predicting susceptibility to olorofim. Olorofim demonstrated excellent potency against M. mycetomatis in vivo with MICs ranging from 0.004 to 0.125 mg/L and an MIC90 of 0.063 mg/L. Olorofim MICs were mostly one dilution step lower than the itraconazole MICs. In vitro interaction studies demonstrated that olorofim and itraconazole work indifferently when combined. CONCLUSIONS: We demonstrated olorofim has potent in vitro activity against M. mycetomatis and should be further evaluated in vivo as a treatment option for this disease.


Assuntos
Madurella , Micetoma , Acetamidas , Antifúngicos/farmacologia , Humanos , Micetoma/tratamento farmacológico , Piperazinas , Pirimidinas , Pirróis
2.
Proc Natl Acad Sci U S A ; 113(45): 12809-12814, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27791100

RESUMO

There is an important medical need for new antifungal agents with novel mechanisms of action to treat the increasing number of patients with life-threatening systemic fungal disease and to overcome the growing problem of resistance to current therapies. F901318, the leading representative of a novel class of drug, the orotomides, is an antifungal drug in clinical development that demonstrates excellent potency against a broad range of dimorphic and filamentous fungi. In vitro susceptibility testing of F901318 against more than 100 strains from the four main pathogenic Aspergillus spp. revealed minimal inhibitory concentrations of ≤0.06 µg/mL-greater potency than the leading antifungal classes. An investigation into the mechanism of action of F901318 found that it acts via inhibition of the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH) in a fungal-specific manner. Homology modeling of Aspergillus fumigatus DHODH has identified a predicted binding mode of the inhibitor and important interacting amino acid residues. In a murine pulmonary model of aspergillosis, F901318 displays in vivo efficacy against a strain of A. fumigatus sensitive to the azole class of antifungals and a strain displaying an azole-resistant phenotype. F901318 is currently in late Phase 1 clinical trials, offering hope that the antifungal armamentarium can be expanded to include a class of agent with a mechanism of action distinct from currently marketed antifungals.

3.
Artigo em Inglês | MEDLINE | ID: mdl-29891595

RESUMO

F901318 (olorofim) is a novel antifungal drug that is highly active against Aspergillus species. Belonging to a new class of antifungals called the orotomides, F901318 targets dihydroorotate dehydrogenase (DHODH) in the de novo pyrimidine biosynthesis pathway. In this study, the antifungal effects of F901318 against Aspergillus fumigatus were investigated. Live cell imaging revealed that, at a concentration of 0.1 µg/ml, F901318 completely inhibited germination, but conidia continued to expand by isotropic growth for >120 h. When this low F901318 concentration was applied to germlings or vegetative hyphae, their elongation was completely inhibited within 10 h. Staining with the fluorescent viability dye bis-(1,3-dibutylbarbituric acid) trimethine oxonol (DiBAC) showed that prolonged exposure to F901318 (>24 h) led to vegetative hyphal swelling and a decrease in hyphal viability through cell lysis. The time-dependent killing of F901318 was further confirmed by measuring the fungal biomass and growth rate in liquid culture. The ability of hyphal growth to recover in drug-free medium after 24 h of exposure to F901318 was strongly impaired compared to that of the untreated control. A longer treatment of 48 h further improved the antifungal effect of F901318. Together, the results of this study indicate that F901318 initially has a fungistatic effect on Aspergillus isolates by inhibiting germination and growth, but prolonged exposure is fungicidal through hyphal swelling followed by cell lysis.


Assuntos
Acetamidas/farmacologia , Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Hifas/efeitos dos fármacos , Piperazinas/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Esporos Fúngicos/efeitos dos fármacos , Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus fumigatus/ultraestrutura , Meios de Cultura/química , Hifas/crescimento & desenvolvimento , Hifas/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/ultraestrutura
4.
Microbiol Spectr ; 12(3): e0330423, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315027

RESUMO

Olorofim, the first member of the novel class of antifungal drugs, the orotomides, shows promising anti-Aspergillus activity and is currently in phase III clinical development. Using high-throughput microscopy, we monitored olorofim's antifungal potential at sub-minimum inhibitory concentration (MIC) levels with a focus on early-stage growth. Unlike voriconazole, olorofim showed significant growth inhibitory activities against three main pathogenic Aspergillus species, Aspergillus fumigatus, Aspergillus flavus, and Aspergillus niger, at concentrations >100,000-fold below its MIC. IMPORTANCE: Among antifungal compounds in clinical development for systemic disease, the orotomide olorofim is one of only two that target a completely new mechanism of action. Olorofim is highly potent against pathogenic Aspergillus species including cryptic species that frequently show increased resistance to current agents. In this study, our primary focus was on evaluating in detail the inhibitory activity of voriconazole and olorofim against different pathogenic Aspergillus species employing high-throughput microscopy. Compared to standardized, less-sensitive visual assessment-based methods, microscopy-assisted growth monitoring allowed us to detect sub-MIC drug concentration ranges with significant inhibitory activity at early-stage growth. This revealed that olorofim exerts growth inhibition at concentrations that are several magnitudes below those of voriconazole.


Assuntos
Acetamidas , Antifúngicos , Aspergillus niger , Piperazinas , Pirimidinas , Pirróis , Antifúngicos/farmacologia , Voriconazol/farmacologia , Testes de Sensibilidade Microbiana
5.
Nat Microbiol ; 9(1): 29-34, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38151646

RESUMO

Widespread use of azole antifungals in agriculture has been linked to resistance in the pathogenic fungus Aspergillus fumigatus. We show that exposure of A. fumigatus to the agrochemical fungicide, ipflufenoquin, in vitro can select for strains that are resistant to olorofim, a first-in-class clinical antifungal with the same mechanism of action. Resistance is caused by non-synonymous mutations within the target of ipflufenoquin/olorofim activity, dihydroorotate dehydrogenase (DHODH), and these variants have no overt growth defects.


Assuntos
Aspergillus fumigatus , Fungicidas Industriais , Aspergillus fumigatus/genética , Fungicidas Industriais/farmacologia , Agroquímicos , Pirróis/farmacologia , Antifúngicos/farmacologia
6.
PLoS One ; 18(8): e0289441, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37531380

RESUMO

Olorofim is a new antifungal in clinical development which has a novel mechanism of action against dihydroorotate dehydrogenase (DHODH). DHODH form a ubiquitous family of enzymes in the de novo pyrimidine biosynthetic pathway and are split into class 1A, class 1B and class 2. Olorofim specifically targets the fungal class 2 DHODH present in a range of pathogenic moulds. The nature and number of DHODH present in many fungal species have not been addressed for large clades of this kingdom. Mucorales species do not respond to olorofim; previous work suggests they have only class 1A DHODH and so lack the class 2 target that olorofim inhibits. The dematiaceous moulds have mixed susceptibility to olorofim, yet previous analyses imply that they have class 2 DHODH. As this is at odds with their intermediate susceptibility to olorofim, we hypothesised that these pathogens may maintain a second class of DHODH, facilitating pyrimidine biosynthesis in the presence of olorofim. The aim of this study was to investigate the DHODH repertoire of clinically relevant species of Mucorales and dematiaceous moulds to further characterise these pathogens and understand variations in olorofim susceptibility. Using bioinformatic analysis, S. cerevisiae complementation and biochemical assays of recombinant protein, we provide the first evidence that two representative members of the Mucorales have only class 1A DHODH, substantiating a lack of olorofim susceptibility. In contrast, bioinformatic analyses initially suggested that seven dematiaceous species appeared to harbour both class 1A-like and class 2-like DHODH genes. However, further experimental investigation of the putative class 1A-like genes through yeast complementation and biochemical assays characterised them as dihydrouracil oxidases rather than DHODHs. These data demonstrate variation in dematiaceous mould olorofim susceptibility is not due to a secondary DHODH and builds on the growing picture of fungal dihydrouracil oxidases as an example of horizontal gene transfer.


Assuntos
Mucorales , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Di-Hidro-Orotato Desidrogenase , Saccharomyces cerevisiae/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Pirimidinas/farmacologia
7.
Emerg Microbes Infect ; 11(1): 703-714, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35109772

RESUMO

Olorofim (F901318) is a new antifungal currently under clinical development that shows both in vitro and in vivo activity against a number of filamentous fungi including Aspergillus fumigatus. In this study, we screened A. fumigatus isolates for intrinsic olorofim-resistant A. fumigatus and evaluated the ability of A. fumigatus to acquire an olorofim-resistant phenotype. No intrinsic resistance was found in 975 clinical A. fumigatus isolates. However, we found that isolates with increased olorofim MICs (> 8 mg/L) could be selected using a high number of conidia and olorofim exposure under laboratory conditions. Assessment of the frequency of acquired olorofim resistance development of A. fumigatus was shown to be higher than for voriconazole but lower than for itraconazole. Sequencing the PyrE gene of isogenic isolates with olorofim MICs of >8 mg/L identified various amino acid substitutions with a hotspot at locus G119. Olorofim was shown to have reduced affinity to mutated target protein dihydroorotate dehydrogenase (DHODH) and the effect of these mutations was proven by introducing the mutations directly in A. fumigatus. We then investigated whether G119 mutations were associated with a fitness cost in A. fumigatus. These experiments showed a small but significant reduction in growth rate for strains with a G119V substitution, while strains with a G119C substitution did not exhibit a reduction in growth rate. These in vitro findings were confirmed in an in vivo pathogenicity model.


Assuntos
Aspergillus fumigatus , Pirimidinas , Acetamidas , Antifúngicos/farmacologia , Aspergillus fumigatus/genética , Proteínas Fúngicas/genética , Testes de Sensibilidade Microbiana , Piperazinas , Pirimidinas/farmacologia , Pirróis
8.
Fungal Genet Biol ; 48(4): 456-64, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21195204

RESUMO

The mitochondrial phosphopantetheinyl transferase gene pptB of the opportunistic pathogen Aspergillus fumigatus has been identified and characterised. Unlike pptA, which is required for lysine biosynthesis, secondary metabolism, and iron assimilation, pptB is essential for viability. PptB is located in the mitochondria. In vitro expression of pptA and pptB has shown that PptB is specific for the mitochondrial acyl carrier protein AcpA.


Assuntos
Aspergillus fumigatus/enzimologia , Proteínas de Bactérias/metabolismo , Mitocôndrias/enzimologia , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Proteína de Transporte de Acila/metabolismo , Aspergillus fumigatus/genética , Aspergillus fumigatus/fisiologia , Proteínas de Bactérias/genética , Viabilidade Microbiana , Especificidade por Substrato , Transferases (Outros Grupos de Fosfato Substituídos)/genética
9.
Eukaryot Cell ; 9(3): 438-48, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20097738

RESUMO

Genes that are essential for viability represent potential targets for the development of anti-infective agents. However, relatively few have been determined in the filamentous fungal pathogen Aspergillus fumigatus. A novel solution employing parasexual genetics coupled with transposon mutagenesis using the Fusarium oxysporum transposon impala had previously enabled the identification of 20 essential genes from A. fumigatus; however, further use of this system required a better understanding of the mode of action of the transposon itself. Examination of a range of conditions indicated that impala is activated by prolonged exposure to low temperatures. This newly identified property was then harnessed to identify 96 loci that are critical for viability in A. fumigatus, including genes required for RNA metabolism, organelle organization, protein transport, ribosome biogenesis, and transcription, as well as a number of noncoding RNAs. A number of these genes represent potential targets for much-needed novel antifungal drugs.


Assuntos
Aspergillus fumigatus/citologia , Aspergillus fumigatus/genética , Temperatura Baixa , Elementos de DNA Transponíveis/genética , Genes Fúngicos/genética , Viabilidade Microbiana/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus nidulans/genética , Diploide , Fusarium/genética , Expressão Gênica/genética , Haploidia , Cinética , Mutagênese Insercional/genética , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transformação Genética , Transposases/genética
10.
J Fungi (Basel) ; 6(2)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290206

RESUMO

The first characterized antifungal in the orotomide class is olorofim. It targets the de novo pyrimidine biosynthesis pathway by inhibiting dihydroorotate dehydrogenase (DHODH). The pyrimidines uracil, thymine and cytosine are the building blocks of DNA and RNA; thus, inhibition of their synthesis is likely to have multiple effects, including affecting cell cycle regulation and protein synthesis. Additionally, uridine-5'-triphosphate (UTP) is required for the formation of uridine-diphosphate glucose (UDP-glucose), which is an important precursor for several cell wall components. In this study, the dynamic effects of olorofim treatment on the morphology and organization of Aspergillus fumigatus hyphae were analyzed microscopically using confocal live-cell imaging. Treatment with olorofim led to increased chitin content in the cell wall, increased septation, enlargement of vacuoles and inhibition of mitosis. Furthermore, vesicle-like structures, which could not be stained or visualized with a range of membrane- or vacuole-selective dyes, were found in treated hyphae. A colocalization study of DHODH and MitoTracker Red FM confirmed for the first time that A. fumigatus DHODH is localized in the mitochondria. Overall, olorofim treatment was found to significantly influence the dynamic structure and organization of A. fumigatus hyphae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA