Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nano Lett ; 20(5): 3889-3894, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32227961

RESUMO

The employment of ionizing radiation is a powerful tool in cancer therapy, but beyond targeted effects, many studies have highlighted the relevance of its off-target consequences. An exhaustive understanding of the mechanisms underlying these effects is still missing, and no real-time data about signals released by cells during irradiation are presently available. We employed a synchrotron X-ray nanobeam to perform the first real-time simultaneous measurement of both X-ray irradiation and in vitro neurotransmitter release from individual adrenal phaeochromocytoma (PC12) cells plated over a diamond-based multielectrode array. We have demonstrated that, in specific conditions, X-rays can alter cell activity by promoting dopamine exocytosis, and such an effect is potentially very attractive for a more effective treatment of tumors.


Assuntos
Dopamina , Exocitose , Neurotransmissores , Raios X , Animais , Diamante , Células PC12 , Ratos
2.
Anal Chem ; 88(15): 7493-9, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27376596

RESUMO

A microstructured graphitic 4 × 4 multielectrode array was embedded in a single-crystal diamond substrate (4 × 4 µG-SCD MEA) for real-time monitoring of exocytotic events from cultured chromaffin cells and adrenal slices. The current approach relies on the development of a parallel ion beam lithographic technique, which assures the time-effective fabrication of extended arrays with reproducible electrode dimensions. The reported device is suitable for performing amperometric and voltammetric recordings with high sensitivity and temporal resolution, by simultaneously acquiring data from 16 rectangularly shaped microelectrodes (20 × 3.5 µm(2)) separated by 200 µm gaps. Taking advantage of the array geometry we addressed the following specific issues: (i) detect both the spontaneous and KCl-evoked secretion simultaneously from several chromaffin cells directly cultured on the device surface, (ii) resolve the waveform of different subsets of exocytotic events, and (iii) monitoring quantal secretory events from thin slices of the adrenal gland. The frequency of spontaneous release was low (0.12 and 0.3 Hz, respectively, for adrenal slices and cultured cells) and increased up to 0.9 Hz after stimulation with 30 mM KCl in cultured cells. The spike amplitude as well as rise and decay time were comparable with those measured by carbon fiber microelectrodes and allowed to identify three different subsets of secretory events associated with "full fusion" events, "kiss-and-run" and "kiss-and-stay" exocytosis, confirming that the device has adequate sensitivity and time resolution for real-time recordings. The device offers the significant advantage of shortening the time to collect data by allowing simultaneous recordings from cell populations either in primary cell cultures or in intact tissues.


Assuntos
Glândulas Suprarrenais/metabolismo , Células Cromafins/metabolismo , Diamante/química , Exocitose , Grafite/química , Dispositivos Lab-On-A-Chip , Animais , Técnicas Biossensoriais/métodos , Catecolaminas/análise , Bovinos , Células Cultivadas , Camundongos , Microeletrodos
3.
Phys Chem Chem Phys ; 18(3): 1961-8, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26686374

RESUMO

Quantum-mechanical ab initio calculations are performed to elucidate the vibrational spectroscopic features of a common irradiation-induced defect in diamond, i.e. the neutral vacancy. Raman spectra are computed analytically through a Coupled-Perturbed-Hartree-Fock/Kohn-Sham approach as a function of both different defect spin states and defect concentration. The experimental Raman features of defective diamond located in the 400-1300 cm(-1) spectral range, i.e. below the first-order line of pristine diamond at 1332 cm(-1), are well reproduced, thus corroborating the picture according to which, at low damage densities, this spectral region is mostly affected by non-graphitic sp(3) defects. No peaks above 1332 cm(-1) are found, thus ruling out previous tentative assignments of different spectral features (at 1450 and 1490 cm(-1)) to the neutral vacancy. The perturbation introduced by the vacancy to the thermal nuclear motion of carbon atoms in the defective lattice is discussed in terms of atomic anisotropic displacement parameters (ADPs), computed from converged lattice dynamics calculations.

4.
Sensors (Basel) ; 15(1): 515-28, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25558992

RESUMO

The detection of quantal exocytic events from neurons and neuroendocrine cells is a challenging task in neuroscience. One of the most promising platforms for the development of a new generation of biosensors is diamond, due to its biocompatibility, transparency and chemical inertness. Moreover, the electrical properties of diamond can be turned from a perfect insulator into a conductive material (resistivity ~mΩ·cm) by exploiting the metastable nature of this allotropic form of carbon. A 16­channels MEA (Multi Electrode Array) suitable for cell culture growing has been fabricated by means of ion implantation. A focused 1.2 MeV He+ beam was scanned on a IIa single-crystal diamond sample (4.5 × 4.5 × 0.5 mm3) to cause highly damaged sub-superficial structures that were defined with micrometric spatial resolution. After implantation, the sample was annealed. This process provides the conversion of the sub-superficial highly damaged regions to a graphitic phase embedded in a highly insulating diamond matrix. Thanks to a three-dimensional masking technique, the endpoints of the sub-superficial channels emerge in contact with the sample surface, therefore being available as sensing electrodes. Cyclic voltammetry and amperometry measurements of solutions with increasing concentrations of adrenaline were performed to characterize the biosensor sensitivity. The reported results demonstrate that this new type of biosensor is suitable for in vitro detection of catecholamine release.


Assuntos
Diamante/química , Grafite/química , Impressão/instrumentação , Impressão/métodos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos , Imageamento Tridimensional , Íons
5.
RSC Adv ; 14(11): 7770-7778, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38444974

RESUMO

Droplet-based microfluidics systems have become widely used in recent years thanks to their advantages, varying from the possibility of handling small fluid volumes to directly synthesizing and encapsulating various living forms for biological-related applications. The effectiveness of such systems mainly depends on the ability to control some of these systems' parameters, such as produced droplet size and formation time, which represents a challenging task. This work reports an experimental study on tuning droplet size and generation time in a flow-focusing geometry fabricated with stereolithography 3D printing by exploring the interplay of phase and geometrical parameters. We produced droplets at different low flow rates of continuous and dispersed phases to assess the effect of each of these phases on the droplets' size and formation time. We observed that smaller droplets were produced for high viscosity oil and water phase, along with high flow rates. In addition, changing the microfluidics channels' width, and morphology of the orifice has shown a similar effect on droplet size, as shown in the case of high-viscosity solutions. The variation of the bifurcation angle shows a noticeable variation in terms of the achieved droplet size and formation time. We further investigated the impact of modifying the width ratio of the continuous and dispersed phases on droplet formation.

6.
Biosens Bioelectron ; 220: 114876, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36375258

RESUMO

The investigation of secondary effects induced by ionizing radiation represents a new and ever-growing research field in radiobiology. This new paradigm cannot be investigated only using standard instrumentation and methodologies, but rather requires novel technologies to achieve significant progress. In this framework, we developed diamond-based sensors that allow simultaneous real-time measurements with a high spatial resolution of the secretory activity of a network of cells cultured on the device, as well as of the dose at which they are exposed during irradiation experiments. The devices were functionally characterized by testing both the above-mentioned detection schemes, namely: amperometric measurements of neurotransmitter release from excitable cells (such as dopamine or adrenaline) and dosimetric evaluation using different ionizing particles (alpha particle and X-ray photons). Finally, the sensors were employed to investigate the effects induced by X-rays on the exocytotic activity of PC12 neuroendocrine cells by monitoring the modulation of the dopamine release in real-time.


Assuntos
Técnicas Biossensoriais , Diamante , Dopamina , Técnicas Biossensoriais/métodos , Radiobiologia , Radiação Ionizante
7.
ACS Photonics ; 10(1): 101-110, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36691430

RESUMO

We provide the first systematic characterization of the structural and photoluminescence properties of optically active centers fabricated upon implantation of 30-100 keV Mg+ ions in synthetic diamond. The structural configurations of Mg-related defects were studied by the electron emission channeling technique for short-lived, radioactive 27Mg implantations at the CERN-ISOLDE facility, performed both at room temperature and 800 °C, which allowed the identification of a major fraction of Mg atoms (∼30 to 42%) in sites which are compatible with the split-vacancy structure of the MgV complex. A smaller fraction of Mg atoms (∼13 to 17%) was found on substitutional sites. The photoluminescence emission was investigated both at the ensemble and individual defect level in the 5-300 K temperature range, offering a detailed picture of the MgV-related emission properties and revealing the occurrence of previously unreported spectral features. The optical excitability of the MgV center was also studied as a function of the optical excitation wavelength to identify the optimal conditions for photostable and intense emission. The results are discussed in the context of the preliminary experimental data and the theoretical models available in the literature, with appealing perspectives for the utilization of the tunable properties of the MgV center for quantum information processing applications.

8.
Opt Lett ; 37(4): 671-3, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22344143

RESUMO

We present the results of variable-angle spectroscopic ellipsometry and transmittance measurements to determine the variation of the complex refractive index of ion-implanted single-crystal diamond. An increase is found in both real and imaginary parts at increasing damage densities. The index depth variation is determined in the whole wavelength range between 250 and 1690 nm. The dependence from the vacancy density is evaluated, highlighting a deviation from linearity in the high-damage-density regime. A considerable increase (up to 5%) in the real part of the index is observed, attributed to an increase in polarizability, thus offering new microfabrication possibilities for waveguides and other photonic structures in diamond.

9.
Nanomaterials (Basel) ; 11(10)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34685181

RESUMO

In recent decades, nanodiamonds (NDs) have earned increasing interest in a wide variety of research fields, thanks to their excellent mechanical, chemical, and optical properties, together with the possibility of easily tuning their surface chemistry for the desired purpose. According to the application context, it is essential to acquire an extensive understanding of their interaction with water in terms of hydrophilicity, environmental adsorption, stability in solution, and impact on electrical properties. In this paper, we report on a systematic study of the effects of reducing and oxidizing thermal processes on ND surface water adsorption. Both detonation and milled NDs were analyzed by combining different techniques. Temperature-dependent infrared spectroscopy was employed to study ND surface chemistry and water adsorption, while dynamic light scattering allowed the evaluation of their behavior in solution. The influence of water adsorption on their electrical properties was also investigated and correlated with structural and optical information obtained via Raman/photoluminescence spectroscopy. In general, higher oxygen-containing surfaces exhibited higher hydrophilicity, better stability in solution, and higher electrical conduction, although for the latter the surface graphitic contribution was also crucial. Our results provide in-depth information on the hydrophilicity of NDs in relation to their surface chemical and physical properties, by also evaluating the impacts on their aggregation and electrical conductance.

10.
Anal Bioanal Chem ; 395(7): 2211-7, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19705108

RESUMO

Lapis lazuli is one of the oldest precious stone, being used for glyptic as early as 7,000 years ago: jewels, amulets, seals, and inlays are examples of objects produced using this material. Only a few sources of lapis lazuli exist in the world due to the low probability of geological conditions in which it can form, so that the possibility to associate the raw material to man-made objects helps to reconstruct trade routes. Since art objects produced using lapis lazuli are valuable, only nondestructive investigations can be carried out to identify the provenance of the raw materials. Ionoluminescence (IL) is a good candidate for this task. Similar to cathodoluminescence (CL), IL consists in the collection of luminescence spectra induced by megaelectronvolt ion (usually protons) irradiation. The main advantage of IL consists in the possibility of working in air while measuring simultaneously the composition of major and trace elements by means of complementary ion beam analysis techniques like particle-induced X-ray emission (PIXE) or particle-induced gamma-ray emission (PIGE). In the present work, a systematic study of the luminescence properties of lapis lazuli under charged particle irradiation is reported. In the first phase, a multitechnique approach was adopted (CL, scanning electron microscopy with microanalysis, micro-Raman) to characterize luminescent minerals. This characterization was propaedeutic for IL/PIXE/PIGE measurements carried out on significant areas selected on the basis of results obtained previously. Criteria to identify provenance of lapis lazuli from four of the main sources (Afghanistan, Pamir Mountains in Tajikistan, Chile, and Siberia) were proposed.

11.
Biophys Chem ; 253: 106241, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31398633

RESUMO

Micro graphitic - diamond - multi electrode arrays (µG-D-MEAs) are suitable for measuring multisite quantal dopamine (DA) release from PC12 cells. Following cell stimulation with high extracellular KCl and electrode polarization at +650 mV, amperometric spikes are detected with a mean frequency of 0.60 ±â€¯0.16 Hz. In each recording, simultaneous detection of secretory events is occurred in approximately 50% of the electrodes. Kinetic spike parameters and background noise are preserved among the different electrodes. Comparing the amperometric spikes recorder under control conditions with those recorders from PC12 cells previously incubated for 30 min with the dopamine precursor Levodopa (L-DOPA, 20 µM) it appears that the quantal size of amperometric spikes is increased by 250% and the half-time width (t1/2) by over 120%. On the contrary, L-DOPA has no effect on the frequency of secretory events. Overall, these data demonstrate that the µG-D-MEAs represent a reliable bio-sensor to simultaneously monitor quantal exocytotic events from different cells and in perspective can be exploited as a drug-screening tool.


Assuntos
Técnicas Biossensoriais , Diamante/química , Dopamina/metabolismo , Grafite/química , Animais , Células Cultivadas , Diamante/metabolismo , Dopamina/química , Eletrodos , Grafite/metabolismo , Células PC12 , Tamanho da Partícula , Ratos , Propriedades de Superfície
12.
Front Neurosci ; 13: 288, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024230

RESUMO

Micro-Graphitic Single Crystal Diamond Multi Electrode Arrays (µG-SCD-MEAs) have so far been used as amperometric sensors to detect catecholamines from chromaffin cells and adrenal gland slices. Besides having time resolution and sensitivity that are comparable with carbon fiber electrodes, that represent the gold standard for amperometry, µG-SCD-MEAs also have the advantages of simultaneous multisite detection, high biocompatibility and implementation of amperometric/potentiometric protocols, aimed at monitoring exocytotic events and neuronal excitability. In order to adapt diamond technology to record neuronal activity, the µG-SCD-MEAs in this work have been interfaced with cultured midbrain neurons to detect electrical activity as well as quantal release of dopamine (DA). µG-SCD-MEAs are based on graphitic sensing electrodes that are embedded into the diamond matrix and are fabricated using MeV ion beam lithography. Two geometries have been adopted, with 4 × 4 and 8 × 8 microelectrodes (20 µm × 3.5 µm exposed area, 200 µm spacing). In the amperometric configuration, the 4 × 4 µG-SCD-MEAs resolved quantal exocytosis from midbrain dopaminergic neurons. KCl-stimulated DA release occurred as amperometric spikes of 15 pA amplitude and 0.5 ms half-width, at a mean frequency of 0.4 Hz. When used as potentiometric multiarrays, the 8 × 8 µG-SCD-MEAs detected the spontaneous firing activity of midbrain neurons. Extracellularly recorded action potentials (APs) had mean amplitude of ∼-50 µV and occurred at a mean firing frequency of 0.7 Hz in 67% of neurons, while the remaining fired at 6.8 Hz. Comparable findings were observed using conventional MEAs (0.9 and 6.4 Hz, respectively). To test the reliability of potentiometric recordings with µG-SCD-MEAs, the D2-autoreceptor modulation of firing was investigated by applying levodopa (L-DOPA, 20 µM), and comparing µG-SCD-MEAs, conventional MEAs and current-clamp recordings. In all cases, L-DOPA reduced the spontaneous spiking activity in most neurons by 70%, while the D2-antagonist sulpiride reversed this effect. Cell firing inhibition was generally associated with increased APs amplitude. A minority of neurons was either insensitive to, or potentiated by L-DOPA, suggesting that AP recordings originate from different midbrain neuronal subpopulations and reveal different modulatory pathways. Our data demonstrate, for the first time, that µG-SCD-MEAs are multi-functional biosensors suitable to resolve real-time DA release and AP firing in in vitro neuronal networks.

13.
ACS Chem Neurosci ; 8(2): 252-264, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28027435

RESUMO

High biocompatibility, outstanding electrochemical responsiveness, inertness, and transparency make diamond-based multiarrays (DBMs) first-rate biosensors for in vitro detection of electrochemical and electrical signals from excitable cells together, with potential for in vivo applications as neural interfaces and prostheses. Here, we will review the electrochemical and physical properties of various DBMs and how these devices have been employed for recording released neurotransmitter molecules and all-or-none action potentials from living cells. Specifically, we will overview how DBMs can resolve localized exocytotic events from subcellular compartments using high-density microelectrode arrays (MEAs), or monitoring oxidizable neurotransmitter release from populations of cells in culture and tissue slices using low-density MEAs. Interfacing DBMs with excitable cells is currently leading to the promising opportunity of recording electrical signals as well as creating neuronal interfaces through the same device. Given the recent increasingly growing development of newly available DBMs of various geometries to monitor electrical activity and neurotransmitter release in a variety of excitable and neuronal tissues, the discussion will be limited to planar DBMs.


Assuntos
Potenciais de Ação/fisiologia , Técnicas Biossensoriais/instrumentação , Diamante/química , Neurônios/fisiologia , Neurotransmissores/metabolismo , Animais , Técnicas Biossensoriais/métodos , Células Cromafins
14.
Opt Express ; 14(17): 7986-93, 2006 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19529168

RESUMO

Coherent population trapping at zero magnetic field was observed for nitrogen-vacancy centers in diamond under optical excitation. This was measured as a reduction in photoluminescence when the detuning between two excitation lasers matched the 2.88 GHz crystal-field splitting of the color center ground states. This behavior is highly sensitive to strain, which modifies the excited states, and was unexpected following recent experiments demonstrating optical readout of single nitrogen-vacancy electron spins based on cycling transitions. These results demonstrate for the first time that three-level Lambda configurations suitable for proposed quantum information applications can be realized simultaneously for all four orientations of nitrogen-vacancy centers at zero magnetic field.

15.
Sci Rep ; 6: 20682, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26857940

RESUMO

We report on the ion beam fabrication of all-carbon multi electrode arrays (MEAs) based on 16 graphitic micro-channels embedded in single-crystal diamond (SCD) substrates. The fabricated SCD-MEAs are systematically employed for the in vitro simultaneous amperometric detection of the secretory activity from populations of chromaffin cells, demonstrating a new sensing approach with respect to standard techniques. The biochemical stability and biocompatibility of the SCD-based device combined with the parallel recording of multi-electrodes array allow: i) a significant time saving in data collection during drug screening and/or pharmacological tests over a large number of cells, ii) the possibility of comparing altered cell functionality among cell populations, and iii) the repeatition of acquisition runs over many cycles with a fully non-toxic and chemically robust bio-sensitive substrate.


Assuntos
Células Cromafins/metabolismo , Diamante , Neurotransmissores/análise , Animais , Bovinos , Células Cromafins/citologia , Eletrodos , Neurotransmissores/metabolismo , Oxirredução
16.
Sci Rep ; 5: 15901, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26510889

RESUMO

Focused MeV ion beams with micrometric resolution are suitable tools for the direct writing of conductive graphitic channels buried in an insulating diamond bulk, as already demonstrated for different device applications. In this work we apply this fabrication method to the electrical excitation of color centers in diamond, demonstrating the potential of electrical stimulation in diamond-based single-photon sources. Differently from optically-stimulated light emission from color centers in diamond, electroluminescence (EL) requires a high current flowing in the diamond subgap states between the electrodes. With this purpose, buried graphitic electrode pairs, 10 µm spaced, were fabricated in the bulk of a single-crystal diamond sample using a 6 MeV C microbeam. The electrical characterization of the structure showed a significant current injection above an effective voltage threshold of 150 V, which enabled the stimulation of a stable EL emission. The EL imaging allowed to identify the electroluminescent regions and the residual vacancy distribution associated with the fabrication technique. Measurements evidenced isolated electroluminescent spots where non-classical light emission in the 560-700 nm spectral range was observed. The spectral and auto-correlation features of the EL emission were investigated to qualify the non-classical properties of the color centers.

17.
Adv Mater ; 25(34): 4696-700, 2013 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23847004

RESUMO

An MeV ion-microbeam lithographic technique can be successfully employed for the fabrication of an all-carbon miniaturized cellular biosensor based on graphitic microchannels embedded in a single-crystal diamond matrix. The device is functionally characterized for the in vitro recording of quantal exocytic events from single chromaffin cells, with high sensitivity and signal-to-noise ratio, opening promising perspectives for the realization of monolithic all-carbon cellular biosensors.


Assuntos
Técnicas Biossensoriais , Células Cromafins/citologia , Diamante/química , Exocitose/fisiologia , Glândulas Suprarrenais/citologia , Animais , Células Cultivadas , Células Cromafins/metabolismo , Técnicas Eletroquímicas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microeletrodos , Miniaturização , Razão Sinal-Ruído
18.
J Control Release ; 149(2): 196-205, 2011 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-20946921

RESUMO

Doxorubicin is one of the most employed anticancer drugs, but its efficacy is limited by the onset of adverse effects such as drug resistance, due to the drug efflux via P-glycoprotein (Pgp). Several factors are associated to a high Pgp activity, including the amount of cholesterol in plasma membrane, which is essential to maintain the pump function. In this work we started from the following observations: 1) the drug-resistant colon cancer HT29-dx cells had a higher content of cholesterol in plasma membrane than drug-sensitive HT29 cells and a higher activity of Pgp, which was decreased by the cholesterol-lowering agent ß-methyl-cyclodextrin; 2) HT29-dx cells showed a higher synthesis of endogenous cholesterol and a higher expression of the low-density lipoprotein receptor (LDLR); 3) the anti-cholesterolemic drug simvastatin reduced the cholesterol synthesis, increased the synthesis of LDLR and lowered the Pgp activity in resistant cells. In order to circumvent drug resistance we designed a new liposomal doxorubicin, conjugated with a recombinant LDLR-binding peptide from human apoB100: this LDL-masked doxorubicin ("apo-Lipodox") was efficiently internalized by a LDLR-driven endocytosis and induced cytotoxic effects in HT29-dx cells, reversing their drug resistance. Its efficacy was further increased by simvastatin, which up-regulates the LDLR levels and contemporarily reduces the Pgp activity, thus increasing the liposomes uptake and limiting the drug efflux. We propose that the association of liposomal doxorubicin and statins may be a future promising strategy to reverse drug-resistance in human cancer cells.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores de LDL/antagonistas & inibidores , Sequência de Aminoácidos , Antibióticos Antineoplásicos/administração & dosagem , Apolipoproteína B-100/química , Apolipoproteína B-100/farmacologia , Sítios de Ligação , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Colesterol/biossíntese , Doxorrubicina/administração & dosagem , Células HT29 , Humanos , Lipossomos , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia
19.
Opt Lett ; 32(11): 1575-7, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17546193

RESUMO

A focused ion beam is used to mill side holes in air-silica structured fibers. By way of example, side holes are introduced in two types of air-structured fiber, (1) a photonic crystal four-ring fiber and (2) a six-hole single-ring step-index structured fiber.

20.
Phys Rev Lett ; 97(24): 247401, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17280321

RESUMO

Coherent population trapping is demonstrated in single nitrogen-vacancy centers in diamond under optical excitation. For sufficient excitation power, the fluorescence intensity drops almost to the background level when the laser modulation frequency matches the 2.88 GHz splitting of the ground states. The results are well described theoretically by a four-level model, allowing the relative transition strengths to be determined for individual centers. The results show that all-optical control of single spins is possible in diamond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA