Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Synchrotron Radiat ; 28(Pt 6): 1811-1819, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738934

RESUMO

X-ray absorption fine-structure (XAFS) spectroscopy can assess the chemical speciation of the elements providing their coordination and oxidation state, information generally hidden to other techniques. In the case of trace elements, achieving a good quality XAFS signal poses several challenges, as it requires high photon flux, counting statistics and detector linearity. Here, a new multi-element X-ray fluorescence detector is presented, specifically designed to probe the chemical speciation of trace 3d elements down to the p.p.m. range. The potentialities of the detector are presented through a case study: the speciation of ultra-diluted elements (Fe, Mn and Cr) in geological rocks from a calcareous formation related to the dispersal processes from Ontong (Java) volcanism (mid-Cretaceous). Trace-elements speciation is crucial in evaluating the impact of geogenic and anthropogenic harmful metals on the environment, and to evaluate the risks to human health and ecosystems. These results show that the new detector is suitable for collecting spectra of 3d elements in trace amounts in a calcareous matrix. The data quality is high enough that quantitative data analysis could be performed to determine their chemical speciation.


Assuntos
Oligoelementos , Ecossistema , Teste de Esforço , Humanos , Metais , Oligoelementos/análise , Espectroscopia por Absorção de Raios X
2.
Angew Chem Int Ed Engl ; 59(50): 22763-22770, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-32750196

RESUMO

Ru/Al2 O3 is a highly stable, but less active catalyst for methanation reactions. Herein we report an effective approach to significantly improve its performance in the methanation of CO2 /H2 mixtures. Highly active and stable Ru/γ-Al2 O3 catalysts were prepared by high-temperature treatment in the reductive reaction gas. Operando/in situ spectroscopy and STEM imaging reveals that the strongly improved activity, by factors of 5 and 14 for CO and CO2 methanation, is accompanied by a flattening of the Ru nanoparticles and the formation of highly basic hydroxylated alumina sites. We propose a modification of the metal-support interactions (MSIs) as the origin of the increased activity, caused by modification of the Al2 O3 surface in the reductive atmosphere and an increased thermal mobility of the Ru nanoparticles, allowing their transfer to modified surface sites.

3.
Inorg Chem ; 57(22): 14027-14030, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30376304

RESUMO

The achievement of controlling thermal expansion is important for open-framework structures. The present work proposes a feasible way to adjust the coefficient of thermal expansion continuously from negative to positive via inserting guest Na+ ions or H2O molecules into a GaFe(CN)6 framework. The guest ions or molecules have an intense dampening effect on the transverse vibrations of CN atoms in the -Ga-N≡C-Fe- linkage, especially for the N atoms. This study demonstrates that electrochemical or redox intercalation of guest ions will be an effective way to tune thermal expansion in those negative thermal expansion open-framework materials induced by low-frequency phonons.

4.
Phys Chem Chem Phys ; 19(39): 26672-26678, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28967026

RESUMO

We have studied the valence electronic structure of Ag1-xSn1+xSe2 (x = 0.0, 0.1, 0.2, 0.25) and SnSe (x = 1.0) by a combined analysis of X-ray absorption spectroscopy (XAS) and X-ray photoemission spectroscopy (XPS) measurements. Both XAS and XPS reveal an increase in electron carriers in the system with x (i.e. excess Sn concentration) for 0 ≤ x ≤ 0.25. The core-level spectra (Sn 3d, Ag 3d and Se 3d) show that the charge state of Ag is almost 1+, while that of of Sn splits into Sn2+ and Sn4+ (providing clear evidence of valence skipping for the first time) with a concomitant splitting of Se into Se2- and Se2-δ states. The x dependence of the split components in Sn and Se together with the Se-K edge XAS reveals that the Se valence state may have an essential role in the transport properties of this system.

5.
J Am Chem Soc ; 138(27): 8320-3, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27336200

RESUMO

The understanding of the negative thermal expansion (NTE) mechanism remains challenging but critical for the development of NTE materials. This study sheds light on NTE of ScF3, one of the most outstanding materials with NTE. The local dynamics of ScF3 has been investigated by a combined analysis of synchrotron-based X-ray total scattering, extended X-ray absorption fine structure, and neutron powder diffraction. Very interestingly, we observe that (i) the Sc-F nearest-neighbor distance strongly expands with increasing temperature, while the Sc-Sc next-nearest-neighbor distance contracts, (ii) the thermal ellipsoids of relative vibrations between Sc-F nearest-neighbors are highly elongated in the direction perpendicular to the Sc-F bond, indicating that the Sc-F bond is much softer to bend than to stretch, and (iii) there is mainly dynamically transverse motion of fluorine atoms, rather than static shifts. These results are direct experimental evidence for the NTE mechanism, in which the rigid unit is not necessary for the occurrence of NTE, and the key role is played by the transverse thermal vibrations of fluorine atoms through the "guitar-string" effect.

6.
Phys Chem Chem Phys ; 18(36): 25136-25142, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711527

RESUMO

We have studied the local structure and valence electronic unoccupied states of thermoelectric CsBi4Te6 and superconducting CsBi3.5Pb0.5Te6 (Tc ∼ 3 K) by extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) measurements. The Bi-L3 edge EXAFS reveals wide Bi-Te distance distribution for both compounds indicating complex atomic arrangements in the studied system. The mean square relative displacements (MSRDs) of the Bi-Te bond distances appear largely increased in Pb substituted system due to larger overall local disorder, however, one of the Bi-Te bonds shows a reduced disorder. On the other hand, the Bi-L3 edge XANES is hardly affected by Pb substitution while the Te-L1 edge XANES reveals increased density of unoccupied Te 5p states. This suggests that the carriers introduced by the Pb substitution in CsBi4-xPbxTe6 preferentially goes on Te sites. Similarly, the Cs-L3 edge XANES also shows small changes due to Pb-substitution and reduced local disorder indicated by the reduced width of the Cs-L3 edge white line. We have also shown that the X-ray photoemission spectroscopy (XPS) measurements on various electronic core levels are in a qualitative agreement with the XANES results. These findings are consistent with carrier doping and a reduced disorder in one direction to be likely factors to drive the thermoelectric CsBi4Te6 into a bulk superconductor by Pb-substitution in CsBi4-xPbxTe6.

7.
Phys Chem Chem Phys ; 17(4): 2464-74, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25491072

RESUMO

The structural properties of liquid 1-butyl-3-methylimidazolium iodide [C4mim]I have been investigated using an integrated approach that combines EXAFS spectroscopy and molecular dynamics (MD) simulations. A well defined first coordination shell composed on average of 4.5 I(-) ions around the imidazolium cation has been evidenced, and the structural arrangement of the I(-) ions has been found to be different in the proximity of the most acidic hydrogen atom of the imidazolium ring, as compared to the other two ring protons: in the former case the I(-) ion is not coplanar with the imidazolium ring plane, but it prefers to be above and below the plane itself, while in the latter the anion has the same probability of being or not being coplanar with the plane. A quantitative analysis of the I K-edge EXAFS spectrum of liquid [C4mim]I has been carried out starting from the structural information on the system derived from the MD simulation. This combined approach allows one to reduce the number of correlated model parameters required in the fitting of the experimental data and to increase the reliability of the EXAFS data analysis that represents a non-trivial task when dealing with disordered systems. Moreover, the good agreement between the EXAFS experimental and theoretical spectra of liquid [C4mim]I has proven the reliability of the MD results and force field employed.

8.
Environ Sci Technol ; 48(23): 13888-94, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25369322

RESUMO

Oxidation behavior of nano-Fe(0) particles in an anoxic environment was determined using different state-of-the-art analytical approaches, including high resolution transmission electron microscopy (HR-TEM) combined with energy filtered transmission electron microscopy (EFTEM), X-ray absorption spectroscopy (XAS), and magnetic measurements. Oxidation in controlled experiments was compared in standard double distilled (DD) water, DD water spiked with trichloroethene (TCE), and TCE contaminated site water. Using HR-TEM and EFTEM, we observed a surface oxide layer (∼3 nm) formed immediately after the particles were exposed to water. XAS analysis followed the dynamic change in total metallic iron concentration and iron oxide concentration for the experimental duration of 35 days. The metallic iron concentration in nano-Fe(0) particles exposed to water, was ∼40% after 35 days; in contrast, the samples containing TCE were reduced to ∼15% and even to nil in the case of TCE contaminated site water, suggesting that the contaminants enhance the oxidation of nano-Fe(0). Frequency dependence measurements confirmed the formation of superparamagnetic particles in the system. Overall, our results suggest that nano-Fe(0) oxidized via the Fe(0) - Fe(OH)2 - Fe3O4 - (γ-Fe2O3) route and the formation of superparamagnetic maghemite nanoparticles due to disruption of the surface oxide layer.


Assuntos
Ferro/química , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Compostos Férricos/química , Magnetismo , Nanotecnologia/métodos , Oxirredução , Óxidos/química , Tricloroetileno/química , Poluentes Químicos da Água/química , Espectroscopia por Absorção de Raios X , Difração de Raios X
9.
Environ Sci Technol ; 48(13): 7289-96, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24870403

RESUMO

Engineered nanomaterials (ENMs) are used to enhance the properties of many manufactured products and technologies. Increased use of ENMs will inevitably lead to their release into the environment. An important route of exposure is through the waste stream, where ENMs will enter wastewater treatment plants (WWTPs), undergo transformations, and be discharged with treated effluent or biosolids. To better understand the fate of a common ENM in WWTPs, experiments with laboratory-scale activated sludge reactors and pristine and citrate-functionalized CeO2 nanoparticles (NPs) were conducted. Greater than 90% of the CeO2 introduced was observed to associate with biosolids. This association was accompanied by reduction of the Ce(IV) NPs to Ce(III). After 5 weeks in the reactor, 44 ± 4% reduction was observed for the pristine NPs and 31 ± 3% for the citrate-functionalized NPs, illustrating surface functionality dependence. Thermodynamic arguments suggest that the likely Ce(III) phase generated would be Ce2S3. This study indicates that the majority of CeO2 NPs (>90% by mass) entering WWTPs will be associated with the solid phase, and a significant portion will be present as Ce(III). At maximum, 10% of the CeO2 will remain in the effluent and be discharged as a Ce(IV) phase, governed by cerianite (CeO2).


Assuntos
Reatores Biológicos , Cério/química , Ácido Cítrico/química , Laboratórios , Nanopartículas/química , Esgotos/química , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Biotransformação , Cério/análise , Cinética , Esgotos/microbiologia , Águas Residuárias , Purificação da Água , Espectroscopia por Absorção de Raios X
10.
Nanoscale ; 16(13): 6531-6547, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38488880

RESUMO

In this manuscript, a comprehensive study is presented on Fe-based electrocatalysts with mono, bi, and tri-metallic compositions, emphasizing the influence of processing-structure correlations on the electrocatalytic activity for the oxygen reduction reaction (ORR) in the alkaline medium. These electrocatalysts were synthesized through the mixing of transition metal phthalocyanines (TM-Pc) with conductive carbon support, followed by controlled thermal treatment at specific temperatures (600 °C and 900 °C). An extensive analysis was conducted, employing various techniques, including X-ray Absorption Spectroscopy (XAS), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD), providing valuable insights into the structural characteristics of the synthesized nanoparticles. Importantly, an increase in the Fe-Pc weight percentage from 10% to 30% enhanced the ORR activity, although not proportionally. Furthermore, a comparative analysis between mono, bi, and tri-metallic samples subjected to different functionalization temperatures highlighted the superior electrocatalytic activity of electrocatalysts functionalized at 600 °C, particularly Fe 600 and Fe-Ni-Cu 600. These electrocatalysts featured Eon values of 0.96 V vs. RHE and E1/2 values of 0.9 V vs. RHE, with the added benefit of reduced anionic peroxide production. The potential of these Fe-based electrocatalysts to enhance ORR efficiency is underscored by this research, contributing to the development of more effective and sustainable electrocatalysts for energy conversion technologies.

11.
Biotechnol J ; 18(10): e2300173, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37337924

RESUMO

Magnetosomes are magnetite nanoparticles biosynthesized by magnetotactic bacteria. Given their potential clinical applications for the diagnosis and treatment of cancer, it is essential to understand what becomes of them once they are within the body. With this aim, here we have followed the intracellular long-term fate of magnetosomes in two cell types: cancer cells (A549 cell line), because they are the actual target for the therapeutic activity of the magnetosomes, and macrophages (RAW 264.7 cell line), because of their role at capturing foreign agents. It is shown that cells dispose of magnetosomes using three mechanisms: splitting them into daughter cells, excreting them to the surrounding environment, and degrading them yielding less or non-magnetic iron products. A deeper insight into the degradation mechanisms by means of time-resolved X-ray absorption near-edge structure (XANES) spectroscopy has allowed us to follow the intracellular biotransformation of magnetosomes by identifying and quantifying the iron species occurring during the process. In both cell types there is a first oxidation of magnetite to maghemite and then, earlier in macrophages than in cancer cells, ferrihydrite starts to appear. Given that ferrihydrite is the iron mineral phase stored in the cores of ferritin proteins, this suggests that cells use the iron released from the degradation of magnetosomes to load ferritin. Comparison of both cellular types evidences that macrophages are more efficient at disposing of magnetosomes than cancer cells, attributed to their role in degrading external debris and in iron homeostasis.


Assuntos
Magnetossomos , Neoplasias , Magnetossomos/química , Ferro/metabolismo , Ferritinas/análise , Ferritinas/metabolismo , Macrófagos/metabolismo , Neoplasias/metabolismo
12.
Nat Commun ; 14(1): 4439, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488108

RESUMO

Negative thermal expansion (NTE) alloys possess great practical merit as thermal offsets for positive thermal expansion due to its metallic properties. However, achieving a large NTE with a wide temperature range remains a great challenge. Herein, a metallic framework-like material FeZr2 is found to exhibit a giant uniaxial (1D) NTE with a wide temperature range (93-1078 K, [Formula: see text]). Such uniaxial NTE is the strongest in all metal-based NTE materials. The direct experimental evidence and DFT calculations reveal that the origin of giant NTE is the couple with phonons, flexible framework-like structure, and soft bonds. Interestingly, the present metallic FeZr2 excites giant 1D NTE mainly driven by high-frequency optical branches. It is unlike the NTE in traditional framework materials, which are generally dominated by low energy acoustic branches. In the present study, a giant uniaxial NTE alloy is reported, and the complex mechanism has been revealed. It is of great significance for understanding the nature of thermal expansion and guiding the regulation of thermal expansion.

13.
J Am Chem Soc ; 134(8): 3780-6, 2012 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-22296596

RESUMO

It is known that silicon can be successfully replaced by germanium atoms in the synthesis of imogolite nanotubes, leading to shorter and larger AlGe nanotubes. Beside the change in morphology, two characteristics of the AlGe nanotube synthesis were recently discovered. AlGe imogolite nanotubes can be synthesized at much higher concentrations than AlSi imogolite. AlGe imogolite exists in the form of both single-walled (SW) and double-walled (DW) nanotubes, whereas DW AlSi imogolites have never been observed. In this article, we give details on the physicochemical control over the SW or DW AlGe imogolite structure. For some conditions, an almost 100% yield of SW or DW nanotubes is demonstrated. We propose a model for the formation of SW or DW AlGe imogolite, which also explains why DW AlSi imogolites or higher wall numbers for AlGe imogolite are not likely to be formed.


Assuntos
Alumínio/química , Germânio/química , Nanotubos/química , Silicatos de Alumínio/química , Físico-Química , Modelos Moleculares , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
14.
Dalton Trans ; 51(6): 2517-2530, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35060578

RESUMO

The main objective of the preparation of the Fe3-xGaxO4 (0.14 ≤ x ≤ 1.35) system was to further the knowledge of the magnetic response of Ga3+-doped magnetite for application as MRI contrast agents. With this purpose, monodisperse nanoparticles between 7 and 10 nm with different amounts of gallium were prepared from an optimized protocol based on thermal decomposition of metallo-organic precursors. Thorough characterization of the sample was conducted in order to understand the influence of gallium doping on the structural, morphological and magnetic properties of the Fe3-xGaxO4 system. X-ray diffraction and X-ray absorption near-edge structure measurements have proved the progressive incorporation of Ga in the spinel structure, with different occupations in both tetrahedral and octahedral sites. Magnetization measurements as a function of field temperature have shown a clear dependence of magnetic saturation on the gallium content, reaching an Ms value of 110 Am2 kg-1 at 5 K for x = 0.14 (significantly higher than bulk magnetite) and considerably decreasing for amounts above x = 0.57 of gallium. For this reason, nanoparticles with moderate Ga quantities were water-transferred by coating them with the amphiphilic polymer PMAO to further analyse their biomedical potential. Cytotoxicity assays have demonstrated that Fe3-xGaxO4@PMAO formulations with x ≤ 0.57, which are the ones with better magnetic response, are not toxic for cells. Finally, the effect of gallium doping on relaxivities has been analysed by measuring longitudinal (T1-1) and transverse (T1-1) proton relaxation rates at 1.4 T revealing that nanoparticles with x = 0.14 Ga3+ content present remarkable T2 contrast and the nanoparticles with x = 0.26 have great potential to act as dual T1-T2 contrast agents.


Assuntos
Nanopartículas de Magnetita
15.
Chem Mater ; 33(9): 3139-3154, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34556898

RESUMO

The currently existing magnetic hyperthermia treatments usually need to employ very large doses of magnetic nanoparticles (MNPs) and/or excessively high excitation conditions (H × f > 1010 A/m s) to reach the therapeutic temperature range that triggers cancer cell death. To make this anticancer therapy truly minimally invasive, it is crucial the development of improved chemical routes that give rise to monodisperse MNPs with high saturation magnetization and negligible dipolar interactions. Herein, we present an innovative chemical route to synthesize Zn-doped magnetite NPs based on the thermolysis of two kinds of organometallic precursors: (i) a mixture of two monometallic oleates (FeOl + ZnOl), and (ii) a bimetallic iron-zinc oleate (Fe3-y Zn y Ol). These approaches have allowed tailoring the size (10-50 nm), morphology (spherical, cubic, and cuboctahedral), and zinc content (Zn x Fe3-x O4, 0.05 < x < 0.25) of MNPs with high saturation magnetization (≥90 Am2/kg at RT). The oxidation state and the local symmetry of Zn2+ and Fe2+/3+ cations have been investigated by means of X-ray absorption near-edge structure (XANES) spectroscopy, while the Fe center distribution and vacancies within the ferrite lattice have been examined in detail through Mössbauer spectroscopy, which has led to an accurate determination of the stoichiometry in each sample. To achieve good biocompatibility and colloidal stability in physiological conditions, the Zn x Fe3-x O4 NPs have been coated with high-molecular-weight poly(ethylene glycol) (PEG). The magnetothermal efficiency of Zn x Fe3-x O4@PEG samples has been systematically analyzed in terms of composition, size, and morphology, making use of the latest-generation AC magnetometer that is able to reach 90 mT. The heating capacity of Zn0.06Fe2.9 4O4 cuboctahedrons of 25 nm reaches a maximum value of 3652 W/g (at 40 kA/m and 605 kHz), but most importantly, they reach a highly satisfactory value (600 W/g) under strict safety excitation conditions (at 36 kA/m and 125 kHz). Additionally, the excellent heating power of the system is kept identical both immobilized in agar and in the cellular environment, proving the great potential and reliability of this platform for magnetic hyperthermia therapies.

16.
Dalton Trans ; 48(11): 3658-3663, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30762851

RESUMO

Negative thermal expansion (NTE) behavior is an interesting physical phenomenon, but the number of NTE materials is limited. In this study, a new NTE compound has been found, FeFe(CN)6 Prussian blue analogue, where the average linear coefficient of thermal expansion (αl) is -4.260 × 10-6 K-1 between 100 and 450 K. The NTE properties and local vibration dynamics have been investigated by joint experiments of synchrotron X-ray diffraction, X-ray pair distribution function, and extended X-ray absorption fine structure spectroscopy. It has been observed that the Fe-C/Fe-N bonds expand with increasing temperature, while the unit cell shrinks in FeFe(CN)6. The vibration directions of both Fe-C and Fe-N prefer to be perpendicular to the linkage of Fe-C[triple bond, length as m-dash]N-Fe rather than being parallel. More pieces of evidence indicate that the transverse vibrations of N atoms dominate the NTE behavior of FeFe(CN)6. The present results prove directly that the transverse thermal vibrations of C and N atoms are crucial for the occurrence of the NTE of Prussian blue analogues.

17.
J Am Chem Soc ; 130(18): 5862-3, 2008 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-18399635

RESUMO

A simple aqueous synthesis yielded about 100 times more structurally well-organized single-walled aluminogermanate nanotubes than previously reported "standard" procedures. The structure analyses using XRD, IRTF, TEM, and XAS were greatly facilitated by the high concentrations available, and they ascertained the imogolite-like structure of the nanotubes. Simplicity and yield of the synthesis protocol are likely to favor commercial applications of theses materials as well as simplified syntheses of other nanophases.

19.
Antibiotics (Basel) ; 7(3)2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970796

RESUMO

Healthcare-associated infections and the rise of drug-resistant bacteria pose significant challenges to existing antibiotic therapies. Silver nanocomposites are a promising solution to the current crisis, however their therapeutic application requires improved understanding of underpinning structure-function relationships. A family of chemically and structurally modified mesoporous SBA-15 silicas were synthesized as porous host matrices to tune the physicochemical properties of silver nanoparticles. Physicochemical characterization by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption near-edge spectroscopy (XANES) and porosimetry demonstrate that functionalization by a titania monolayer and the incorporation of macroporosity both increase silver nanoparticle dispersion throughout the silica matrix, thereby promoting Ag2CO3 formation and the release of ionic silver in simulated tissue fluid. The Ag2CO3 concentration within functionalized porous architectures is a strong predictor for antibacterial efficacy against a broad spectrum of pathogens, including C. difficile and methicillin-resistant Staphylococcus aureus (MRSA).

20.
J Phys Chem B ; 111(19): 5101-10, 2007 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-17429991

RESUMO

This paper presents a comparison between several methods dedicated to the interpretation of V K-edge X-ray absorption near-edge structure (XANES) features. V K-edge XANES spectra of several V-bearing standard compounds were measured in an effort to evaluate advantages and limits of each method. The standard compounds include natural minerals and synthetic compounds containing vanadium at various oxidation state (from +3 to +5) and in different symmetry (octahedral, tetrahedral, and square pyramidal). Correlations between normalized pre-edge peak area and its centroid position have been identified as the most reliable method for determining quantitative and accurate redox and symmetry information for vanadium. This methodology has been previously developed for the Fe K edge. It is also well adapted for the V K edge and is less influenced by the standard choice than other methods. This methodology was applied on an "environmental sample," i.e., a well-crystallized leached steel slag containing vanadium as traces. Micro-XANES measurements allowed elucidating the microdistribution of vanadium speciation in leached steel slag. The vanadium exhibits an important evolution from the unaltered to the altered phases. Its oxidation state increases from +3 to +5 together with the decrease of its symmetry (from octahedral to tetrahedral).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA