Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Anat ; 237(1): 1-19, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32242931

RESUMO

Ontogenetic studies are crucial for understanding functional morphology, origin and adaptation of skulls in vertebrates. However, very few studies have so far released complete embryonic series focusing on skull embryonic development in species showing diverse and extreme cranial morphologies such as snakes. The wide distribution and unique reproductive and ecological behaviors of venomous vipers, including the heterogeneity in breeding and egg incubation periods in oviparous species, make this group an excellent new model for studying the diversity of skull developmental processes in snakes. Here we present the first complete description of osteocranium development in a viperine snake, Cerastes cerastes, using detailed analysis of the ossification pattern of individual bones across different embryonic stages based on high-resolution micro-computed tomography data. Particularly, we describe in detail the development of the laterosphenoid from its dorsal and ventral components, dividing the trigeminal foramen into maxillary and mandibular foramina. Furthermore, our data help clarify some controversy concerning the presence and/or origin of structures related to the snake basicranium and braincase roof. For example, our detailed description of supraoccipital development suggests that this bone derived, at least in part, from the tectum posterius, although the involvement of the tectum synoticum cannot be totally excluded. Similarly, the epiotic centers of supraoccipital ossification are confirmed during braincase development, and the ancestral lacrimal bone primordium is observed as a ventral element at the early stages of prefrontal development. Finally, our embryonic C. cerastes data highlight a plausible asymmetry in snake skull development, mostly occurring in the basicranium region, but further investigations of embryonic samples and viper species would be required to confirm such phenomenon.


Assuntos
Mandíbula/embriologia , Crânio/embriologia , Viperidae/embriologia , Animais
2.
Nat Ecol Evol ; 8(3): 536-551, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38200368

RESUMO

The arrangement and morphology of the vertebrate skull reflect functional and ecological demands, making it a highly adaptable structure. However, the fundamental developmental and macroevolutionary mechanisms leading to different vertebrate skull phenotypes remain unclear. Here we exploit the morphological diversity of squamate reptiles to assess the developmental and evolutionary patterns of skull variation and covariation in the whole head. Our geometric morphometric analysis of a complex squamate ontogenetic dataset (209 specimens, 169 embryos, 44 species), covering stages from craniofacial primordia to fully ossified bones, reveals that morphological differences between snake and lizard skulls arose gradually through changes in spatial relationships (heterotopy) followed by alterations in developmental timing or rate (heterochrony). Along with dynamic spatiotemporal changes in the integration pattern of skull bone shape and topology with surrounding brain tissues and sensory organs, we identify a relatively higher phenotypic integration of the developing snake head compared with lizards. The eye, nasal cavity and Jacobson's organ are pivotal in skull morphogenesis, highlighting the importance of sensory rearrangements in snake evolution. Furthermore, our findings demonstrate the importance of early embryonic, ontogenetic and tissue interactions in shaping craniofacial evolution and ecological diversification in squamates, with implications for the nature of cranio-cerebral relations across vertebrates.


Assuntos
Cabeça , Crânio , Animais , Crânio/anatomia & histologia , Osteogênese
3.
Sci Adv ; 7(51): eabj7912, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34919438

RESUMO

Despite the exceptional diversity and central role of dentitions in vertebrate evolution, many aspects of tooth characters remain unknown. Here, we exploit the large array of dental phenotypes in acrodontan lizards, including EDA mutants showing the first vertebrate example of positional transformation in tooth identity, to assess the developmental origins and evolutionary patterning of tooth types and heterodonty. We reveal that pleurodont versus acrodont dentition can be determined by a simple mechanism, where modulation of tooth size through EDA signaling has major consequences on dental formula, thereby providing a new flexible tooth patterning model. Furthermore, such implication of morphoregulation in tooth evolution allows predicting the dental patterns characterizing extant and fossil lepidosaurian taxa at large scale. Together, the origins and diversification of tooth types, long a focus of multiple research fields, can now be approached through evo-devo approaches, highlighting the importance of underexplored dental features for illuminating major evolutionary patterns.

4.
Front Physiol ; 9: 278, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29643813

RESUMO

The rise of the Evo-Devo field and the development of multidisciplinary research tools at various levels of biological organization have led to a growing interest in researching for new non-model organisms. Squamates (lizards and snakes) are particularly important for understanding fundamental questions about the evolution of vertebrates because of their high diversity and evolutionary innovations and adaptations that portrait a striking body plan change that reached its extreme in snakes. Yet, little is known about the intricate connection between phenotype and genotype in squamates, partly due to limited developmental knowledge and incomplete characterization of embryonic development. Surprisingly, squamate models have received limited attention in comparative developmental studies, and only a few species examined so far can be considered as representative and appropriate model organism for mechanistic Evo-Devo studies. Fortunately, the agamid lizard Pogona vitticeps (central bearded dragon) is one of the most popular, domesticated reptile species with both a well-established history in captivity and key advantages for research, thus forming an ideal laboratory model system and justifying his recent use in reptile biology research. We first report here the complete post-oviposition embryonic development for P. vitticeps based on standardized staging systems and external morphological characters previously defined for squamates. Whereas the overall morphological development follows the general trends observed in other squamates, our comparisons indicate major differences in the developmental sequence of several tissues, including early craniofacial characters. Detailed analysis of both embryonic skull development and adult skull shape, using a comparative approach integrating CT-scans and gene expression studies in P. vitticeps as well as comparative embryology and 3D geometric morphometrics in a large dataset of lizards and snakes, highlights the extreme adult skull shape of P. vitticeps and further indicates that heterochrony has played a key role in the early development and ossification of squamate skull bones. Such detailed studies of embryonic character development, craniofacial patterning, and bone formation are essential for the establishment of well-selected squamate species as Evo-Devo model organisms. We expect that P. vitticeps will continue to emerge as a new attractive model organism for understanding developmental and molecular processes underlying tissue formation, morphology, and evolution.

5.
Nat Commun ; 9(1): 376, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29371624

RESUMO

The ecological origin of snakes remains amongst the most controversial topics in evolution, with three competing hypotheses: fossorial; marine; or terrestrial. Here we use a geometric morphometric approach integrating ecological, phylogenetic, paleontological, and developmental data for building models of skull shape and size evolution and developmental rate changes in squamates. Our large-scale data reveal that whereas the most recent common ancestor of crown snakes had a small skull with a shape undeniably adapted for fossoriality, all snakes plus their sister group derive from a surface-terrestrial form with non-fossorial behavior, thus redirecting the debate toward an underexplored evolutionary scenario. Our comprehensive heterochrony analyses further indicate that snakes later evolved novel craniofacial specializations through global acceleration of skull development. These results highlight the importance of the interplay between natural selection and developmental processes in snake origin and diversification, leading first to invasion of a new habitat and then to subsequent ecological radiations.


Assuntos
Evolução Biológica , Filogenia , Crânio/anatomia & histologia , Serpentes/anatomia & histologia , Animais , Biodiversidade , Ecologia , Ecossistema , Fósseis , Tamanho do Órgão , Paleontologia , Filogeografia , Crânio/fisiologia , Serpentes/classificação , Serpentes/fisiologia
6.
Biodivers Data J ; (5): e21010, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29362553

RESUMO

BACKGROUND: During a field course on spider taxonomy and ecology at the University of Helsinki, the authors had the opportunity to sample four plots with a dual objective of both teaching on field methods, spider identification and behaviour and uncovering the spider diversity patterns found in the southern coastal forests of Hankoniemi, Finland. As an ultimate goal, this field course intended to contribute to a global project that intends to uncover spider diversity patterns worldwide. With that purpose, a set of standardised methods and procedures was followed that allow the comparability of obtained data with numerous other projects being conducted across all continents. NEW INFORMATION: A total of 104 species and 1997 adults was collected. Of these, 41 species (39%) were Linyphiidae and 13 (12%) Theridiidae. All other families had 6 or less species represented. Linyphiidae were also dominant in terms of adult individuals captured, with 1015 (51%), followed by 428 (21%) Lycosidae, 158 (8%) Tetragnathidae and 145 (7%) Theridiidae. All other families had less than 100 individuals. The most abundant species were Neriene peltata, Alopecosa taeniata, Piratula hygrophila and Dismodicus elevatus, all with more than 100 individuals. All sites had between 56 and 62 species and between 445 and 569 individuals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA