RESUMO
Identifying mechanisms driving the transition from ductal carcinoma in situ (DCIS) to invasive breast cancer remains a challenge in breast cancer research. Breast cancer progression is accompanied by remodelling and stiffening of the extracellular matrix, leading to increased proliferation, survival, and migration. Here, we studied stiffness-dependent phenotypes in MCF10CA1a (CA1a) breast cancer cells cultured on hydrogels with stiffness corresponding to normal breast and breast cancer. This revealed a stiffness-associated morphology consistent with acquisition of an invasive phenotype in breast cancer cells. Surprisingly, this strong phenotypic switch was accompanied by relatively modest transcriptome-wide alterations in mRNA levels, as independently quantified using both DNA-microarrays and bulk RNA sequencing. Strikingly, however, the stiffness-dependent alterations in mRNA levels overlapped with those contrasting ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC). This supports a role of matrix stiffness in driving the pre-invasive to invasive transition and suggests that mechanosignalling may be a target for prevention of invasive breast cancer.
Assuntos
Neoplasias da Mama , Carcinoma in Situ , Carcinoma Ductal de Mama , Carcinoma Intraductal não Infiltrante , Humanos , Feminino , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Transcriptoma , Matriz Extracelular/genética , Matriz Extracelular/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologiaRESUMO
Protein kinase C α (PKCα) is overexpressed in numerous types of cancer. Importantly, PKCα has been linked to metastasis of malignant melanoma in patients. However, it has been unclear how PKCα may be regulated and how it exerts its role in melanoma. Here, we identified a role for PKCα in melanoma cell survival in a three-dimensional collagen model mimicking the in vivo pathophysiology of the dermis. A pathway was identified that involved integrin αv-mediated up-regulation of PKCα and PKCα-dependent regulation of p53 localization, which was connected to melanoma cell survival. Melanoma survival and growth in three-dimensional microenvironments requires the expression of integrin αv, which acts to suppress p53 activity. Interestingly, microarray analysis revealed that PKCα was up-regulated by integrin αv in a three-dimensional microenvironment-dependent manner. Integrin αv was observed to promote a relocalization of endogenous p53 from the nucleus to the cytoplasm upon growth in three-dimensional collagen as well as in vivo, whereas stable knockdown of PKCα inhibited the integrin αv-mediated relocalization of p53. Importantly, knockdown of PKCα also promoted apoptosis in three-dimensional collagen and in vivo, resulting in reduced tumor growth. This indicates that PKCα constitutes a crucial component of the integrin αv-mediated pathway(s) that promote p53 relocalization and melanoma survival.
Assuntos
Núcleo Celular/metabolismo , Colágeno/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Integrina alfaV/metabolismo , Melanoma/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Transporte Ativo do Núcleo Celular/genética , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/patologia , Sobrevivência Celular/genética , Colágeno/química , Colágeno/genética , Humanos , Integrina alfaV/genética , Melanoma/genética , Melanoma/patologia , Proteína Quinase C-alfa/genética , Proteína Supressora de Tumor p53/genética , Regulação para Cima/genéticaRESUMO
Overcoming cellular growth restriction, including the evasion of cellular senescence, is a hallmark of cancer. We report that PAK4 is overexpressed in all human breast cancer subtypes and associated with poor patient outcome. In mice, MMTV-PAK4 overexpression promotes spontaneous mammary cancer, while PAK4 gene depletion delays MMTV-PyMT driven tumors. Importantly, PAK4 prevents senescence-like growth arrest in breast cancer cells in vitro, in vivo and ex vivo, but is not needed in non-immortalized cells, while PAK4 overexpression in untransformed human mammary epithelial cells abrogates H-RAS-V12-induced senescence. Mechanistically, a PAK4 - RELB - C/EBPß axis controls the senescence-like growth arrest and a PAK4 phosphorylation residue (RELB-Ser151) is critical for RELB-DNA interaction, transcriptional activity and expression of the senescence regulator C/EBPß. These findings establish PAK4 as a promoter of breast cancer that can overcome oncogene-induced senescence and reveal a selective vulnerability of cancer to PAK4 inhibition.
Assuntos
Neoplasias da Mama/patologia , Fator de Transcrição RelB/metabolismo , Quinases Ativadas por p21/metabolismo , Animais , Mama/citologia , Mama/patologia , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Senescência Celular/genética , Células Epiteliais , Feminino , Técnicas de Silenciamento de Genes , Humanos , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Cultura Primária de Células , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases Ativadas por p21/genéticaRESUMO
Adhesion to the extracellular matrix persists during mitosis in most cell types. However, while classical adhesion complexes, such as focal adhesions, do and must disassemble to enable mitotic rounding, the mechanisms of residual mitotic cell-extracellular matrix adhesion remain undefined. Here, we identify 'reticular adhesions', a class of adhesion complex that is mediated by integrin αvß5, formed during interphase, and preserved at cell-extracellular matrix attachment sites throughout cell division. Consistent with this role, integrin ß5 depletion perturbs mitosis and disrupts spatial memory transmission between cell generations. Reticular adhesions are morphologically and dynamically distinct from classical focal adhesions. Mass spectrometry defines their unique composition, enriched in phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2)-binding proteins but lacking virtually all consensus adhesome components. Indeed, reticular adhesions are promoted by PtdIns(4,5)P2, and form independently of talin and F-actin. The distinct characteristics of reticular adhesions provide a solution to the problem of maintaining cell-extracellular matrix attachment during mitotic rounding and division.
Assuntos
Junções Célula-Matriz/metabolismo , Matriz Extracelular/metabolismo , Adesões Focais/metabolismo , Mitose , Células A549 , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos , Cadeias beta de Integrinas/metabolismo , Células MCF-7 , Microscopia Confocal , Fosfatidilinositol 4,5-Difosfato/metabolismo , Talina/metabolismoRESUMO
Integrins are the core constituents of cell-matrix adhesion complexes such as focal adhesions (FAs) and play key roles in physiology and disease. Integrins fluctuate between active and inactive conformations, yet whether the activity state influences the spatial organization of integrins within FAs has remained unclear. In this study, we address this question and also ask whether integrin activity may be regulated either independently for each integrin molecule or through locally coordinated mechanisms. We used two distinct superresolution microscopy techniques, stochastic optical reconstruction microscopy (STORM) and stimulated emission depletion microscopy (STED), to visualize active versus inactive ß1 integrins. We first reveal a spatial hierarchy of integrin organization with integrin molecules arranged in nanoclusters, which align to form linear substructures that in turn build FAs. Remarkably, within FAs, active and inactive ß1 integrins segregate into distinct nanoclusters, with active integrin nanoclusters being more organized. This unexpected segregation indicates synchronization of integrin activities within nanoclusters, implying the existence of a coordinate mechanism of integrin activity regulation.
Assuntos
Adesões Focais/metabolismo , Integrina beta1/metabolismo , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/metabolismo , Humanos , Transporte Proteico , Talina/metabolismo , Vinculina/metabolismoRESUMO
p21-activated kinase 4 (PAK4) regulates cell proliferation, apoptosis, cell motility and F-actin remodeling, but the PAK4 interactome has not been systematically analyzed. Here, we comprehensively characterized the human PAK4 interactome by iTRAQ quantitative mass spectrometry of PAK4-immunoprecipitations. Consistent with its multiple reported functions, the PAK4 interactome was enriched in diverse protein networks, including the 14-3-3, proteasome, replication fork, CCT and Arp2/3 complexes. Because PAK4 co-immunoprecipitated most subunits of the Arp2/3 complex, we hypothesized that PAK4 may play a role in Arp2/3 dependent actin regulation. Indeed, we found that PAK4 interacts with and phosphorylates the nucleation promoting factor N-WASP at Ser484/Ser485 and promotes Arp2/3-dependent actin polymerization in vitro. Also, PAK4 ablation in vivo reduced N-WASP Ser484/Ser485 phosphorylation and altered the cellular balance between G- and F-actin as well as the actin organization. By presenting the PAK4 interactome, we here provide a powerful resource for further investigations and as proof of principle, we also indicate a novel mechanism by which PAK4 regulates actin cytoskeleton remodeling.
RESUMO
Cell-to-extracellular matrix adhesion is regulated by a multitude of pathways initiated distally to the core cell-matrix adhesion machinery, such as via growth factor signaling. In contrast to these extrinsically sourced pathways, we now identify a regulatory pathway that is intrinsic to the core adhesion machinery, providing an internal regulatory feedback loop to fine tune adhesion levels. This autoinhibitory negative feedback loop is initiated by cell adhesion to vitronectin, leading to PAK4 activation, which in turn limits total cell-vitronectin adhesion strength. Specifically, we show that PAK4 is activated by cell attachment to vitronectin as mediated by PAK4 binding partner integrin αvß5, and that active PAK4 induces accelerated integrin αvß5 turnover within adhesion complexes. Accelerated integrin turnover is associated with additional PAK4-mediated effects, including inhibited integrin αvß5 clustering, reduced integrin to F-actin connectivity and perturbed adhesion complex maturation. These specific outcomes are ultimately associated with reduced cell adhesion strength and increased cell motility. We thus demonstrate a novel mechanism deployed by cells to tune cell adhesion levels through the autoinhibitory regulation of integrin adhesion.