Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Genetics ; 180(4): 1799-808, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18832360

RESUMO

We have created a resource to rapidly map genetic traits to specific chromosomes in yeast. This mapping is done using a set of 16 yeast strains each containing a different chromosome with a conditionally functional centromere. Conditional centromere function is achieved by integration of a GAL1 promoter in cis to centromere sequences. We show that the 16 yeast chromosomes can be individually lost in diploid strains, which become hemizygous for the destabilized chromosome. Interestingly, most 2n - 1 strains endoduplicate and become 2n. We also demonstrate how chromosome loss in this set of strains can be used to map both recessive and dominant markers to specific chromosomes. In addition, we show that this method can be used to rapidly validate gene assignments from screens of strain libraries such as the yeast gene disruption collection.


Assuntos
Cromossomos Fúngicos/genética , Saccharomyces cerevisiae/genética , Mapeamento Cromossômico , Diploide , Perda de Heterozigosidade , Meiose , Modelos Genéticos , Fenótipo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Biochem J ; 411(2): 361-9, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18095939

RESUMO

We have isolated cDNAs encoding PDE4A8 (phosphodiesterase 4 isoform A8), a new human cAMP-specific PDE4 isoform encoded by the PDE4A gene. PDE4A8 has a novel N-terminal region of 85 amino acids that differs from those of the related 'long' PDE4A4, PDE4A10 and PDE4A11 isoforms. The human PDE4A8 N-terminal region has diverged substantially from the corresponding isoforms in the rat and other mammals, consistent with rapid evolutionary change in this region of the protein. When expressed in COS-7 cells, PDE4A8 localized predominantly in the cytosol, but approx. 20% of the enzyme was associated with membrane fractions. Cytosolic PDE4A8 was exquisitely sensitive to inhibition by the prototypical PDE4 inhibitor rolipram (IC(50) of 11+/-1 nM compared with 1600 nM for PDE4A4), but was less sensitive to inhibition by cilomilast (IC(50) of 101+/-7 nM compared with 61 nM for PDE4A4). PDE4A8 mRNA was found to be expressed predominantly in skeletal muscle and brain, a pattern that differs from the tissue expression of other human PDE4 isoforms and also from that of rat PDE4A8. Immunohistochemical analysis showed that PDE4A8 could be detected in discrete regions of human brain, including the cerebellum, spinal cord and cerebral cortex. The unique tissue distribution of PDE4A8, combined with the evolutionary divergence of its N-terminus, suggest that this isoform may have a specific function in regulating cAMP levels in human skeletal muscle and brain.


Assuntos
Encéfalo/enzimologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Evolução Molecular , Regulação Enzimológica da Expressão Gênica , Sequência de Aminoácidos , Animais , Sequência de Bases , Células COS , Chlorocebus aethiops , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/isolamento & purificação , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Genoma Humano/genética , Humanos , Dados de Sequência Molecular , Nucleotídeos/genética , Especificidade de Órgãos , Fosforilação , RNA Mensageiro/genética , Ratos , Alinhamento de Sequência , Homologia de Sequência , Fatores de Tempo
3.
Genetics ; 162(4): 1557-71, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12524332

RESUMO

Spt16/Cdc68, Pob3, and Nhp6 collaborate in vitro and in vivo as the yeast factor SPN, which is homologous to human FACT. SPN/FACT complexes mediate passage of polymerases through nucleosomes and are important for both transcription and replication. An spt16 mutation was found to be intolerable when combined with a mutation in any member of the set of functionally related genes HIR1, HIR2/SPT1, HIR3/HPC1, or HPC2. Mutations in POB3, but not in NHP6A/B, also display strong synthetic defects with hir/hpc mutations. A screen for other mutations that cause dependence on HIR/HPC genes revealed genes encoding members of the Paf1 complex, which also promotes transcriptional elongation. The Hir/Hpc proteins affect the expression of histone genes and also promote normal deposition of nucleosomes; either role could explain an interaction with elongation factors. We show that both spt16 and pob3 mutants respond to changes in histone gene numbers, but in opposite ways, suggesting that Spt16 and Pob3 each interact with histones but perhaps with different subsets of these proteins. Supporting this, spt16 and pob3 mutants also display different sensitivities to mutations in the N-terminal tails of histones H3 and H4 and to mutations in enzymes that modulate acetylation of these tails. Our results support a model in which SPN/FACT has two functions: it disrupts nucleosomes to allow polymerases to access DNA, and it reassembles the nucleosomes afterward. Mutations that impair the reassembly activity cause chromatin to accumulate in an abnormally disrupted state, imposing a requirement for a nucleosome reassembly function that we propose is provided by Hir/Hpc proteins.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Fator 1 de Modelagem da Cromatina , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dosagem de Genes , Genes Fúngicos , Proteínas HMGN , Histona Acetiltransferases , Histonas/química , Histonas/genética , Histonas/metabolismo , Modelos Biológicos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética , Transativadores/metabolismo , Ativação Transcricional , Fatores de Elongação da Transcrição
4.
J Biol Chem ; 283(17): 11135-45, 2008 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-18292088

RESUMO

Previous studies have revealed many parallels in the cell cycle regulation of the Ace2 and Swi5 transcription factors. Although both proteins begin entry into the nucleus near the start of mitosis, here we show that Ace2 accumulates in the nucleus and binds DNA about 10 min later in the cell cycle than Swi5. We used chimeric fusions to identify the N-terminal region of Ace2 as responsible for the delay, and this same region of Ace2 was required for interaction with Cbk1, a kinase necessary for both transcriptional activation by Ace2 and asymmetric distribution of Ace2. Ace2 and Swi5 also showed differences in prevalence during the cell cycle. Swi5 is apparently degraded soon after nuclear entry, whereas constant Ace2 levels throughout the cell cycle suggest Ace2 is exported from the nucleus. Our work suggests that the precise timing of Ace2 accumulation in the nucleus involves both a nuclear export sequence and a nuclear localization signal, whose activities are regulated by phosphorylation.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/fisiologia , Ciclo Celular , Núcleo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Microscopia de Fluorescência/métodos , Modelos Biológicos , Sinais de Localização Nuclear , Fosforilação , Prevalência , Proteínas Serina-Treonina Quinases , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo , Ativação Transcricional
5.
Eukaryot Cell ; 4(6): 1018-28, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15947194

RESUMO

Mutations in the RAM network genes, including CBK1, MOB2, KIC1, HYM1, and TAO3, cause defects in bud site selection, asymmetric apical growth, and mating projections. Additionally, these mutants show altered colony morphology, cell separation defects, and reduced CTS1 expression, phenotypes also seen by mutating the Ace2 transcription factor. We show that an ACE2 multicopy plasmid suppresses the latter three defects of RAM network mutations, demonstrating that Ace2 is downstream of the RAM network and suggesting that these phenotypes are caused by reduced expression of Ace2 target genes. We show that wild-type W303 strains have a bud4 mutation and that combining bud4 with either ace2 or cbk1 in haploids results in altered colony morphology. We describe a timed sedimentation assay that allows quantitation of cytokinesis defects and subtle changes in budding pattern and cell shape. Experiments examining budding patterns and sedimentation rates both show that Ace2 and Cbk1 have independent functions in addition to their common pathway in transcription of genes such as CTS1. SWI5 encodes a transcription factor paralogous to ACE2. Additive effects are seen in cbk1 swi5 strains, and we show that activation of some target genes, such as EGT2, requires either Swi5 or Ace2 with Cbk1. The relative roles and interactions of Ace2, Cbk1, and Bud4 in bud site selection, polarized growth, and cell separation are discussed.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Citocinese , Proteínas de Ligação a DNA/fisiologia , Proteínas Fúngicas/fisiologia , Proteínas de Ligação ao GTP/fisiologia , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Diploide , Proteínas Fúngicas/genética , Proteínas de Ligação ao GTP/genética , Haploidia , Peptídeos e Proteínas de Sinalização Intracelular , Mutação , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Transcrição Gênica
6.
Biochem J ; 370(Pt 2): 429-38, 2003 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-12441002

RESUMO

We have isolated cDNAs encoding PDE4B4, a new cAMP-specific phosphodiesterase (PDE4) isoform with novel properties. The amino acid sequence of PDE4B4 demonstrates that it is encoded by the PDE4B gene, but that it differs from the previously isolated PDE4B1, PDE4B2 and PDE4B3 isoforms by the presence of a novel N-terminal region of 17 amino acids. PDE4B4 contains both of the upstream conserved region 1 (UCR1) and UCR2 regulatory units that are characteristic of 'long' PDE4 isoforms. RNase protection demonstrated that PDE4B4 mRNA is expressed preferentially in liver, skeletal muscle and various regions of the brain, which differs from the pattern of tissue distribution of the other known PDE4B long forms, PDE4B1 and PDE4B3. Expression of PDE4B4 cDNA in COS7 cells produced a protein of 85 kDa under denaturing conditions. Subcellular fractionation of recombinant, COS7-cell expressed PDE4B4 showed that the protein was localized within the cytosol, which was confirmed by confocal microscopic analysis of living COS7 cells transfected with a green fluorescent protein-PDE4B4 chimaera. PDE4B4 exhibited a K(m) for cAMP of 5.4 microM and a V(max), relative to that of the long PDE4B1 isoform, of 2.1. PDE4B4 was inhibited by the prototypical PDE4 inhibitor rolipram [4-[3-(cyclopentoxyl)-4-methoxyphenyl]-2-pyrrolidinone] with an IC(50) of 83 nM. Treatment of COS7 cells with forskolin, to elevate cAMP levels, produced activation of PDE4B4, which was associated with the phosphorylation of PDE4B4 on Ser-56 within UCR1. The unique tissue distribution and intracellular targeting of PDE4B4 suggests that this isoform may have a distinct functional role in regulating cAMP levels in specific cell types.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/genética , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/metabolismo , Células COS , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , DNA Complementar/isolamento & purificação , Ativação Enzimática/fisiologia , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Dados de Sequência Molecular , Especificidade de Órgãos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA