Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Cell ; 79(4): 541-543, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32822579

RESUMO

In this issue of Molecular Cell, Meydan and Guydosh present an elegant and rigorous addition to the exciting investigation of the roles played by ribosome collisions in eukaryotic translation and cellular homeostasis.


Assuntos
Ribossomos , Controle de Qualidade
2.
J Biol Chem ; 299(1): 102771, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470424

RESUMO

An emerging body of research is revealing mutations in elongation factor eEF2 that are implicated in both inherited and de novo neurodevelopmental disorders. Previous structural analysis has revealed that most pathogenic amino acid substitutions map to the three main points of contact between eEF2 and critical large subunit rRNA elements of the ribosome, specifically to contacts with Helix 69, Helix 95, also known as the sarcin-ricin loop, and Helix 43 of the GTPase-associated center. In order to further investigate these eEF2-ribosome interactions, we identified a series of yeast eEF2 amino acid residues based on their proximity to these functionally important rRNA elements. Based on this analysis, we constructed mutant strains to sample the full range of amino acid sidechain biochemical properties, including acidic, basic, nonpolar, and deletion (alanine) residues. These were characterized with regard to their effects on cell growth, sensitivity to ribosome-targeting antibiotics, and translational fidelity. We also biophysically characterized one mutant from each of the three main points of contact with the ribosome using CD. Collectively, our findings from these studies identified functionally critical contacts between eEF2 and the ribosome. The library of eEF2 mutants generated in this study may serve as an important resource for biophysical studies of eEF2/ribosome interactions going forward.


Assuntos
Fator 2 de Elongação de Peptídeos , Ribossomos , Humanos , Aminoácidos/química , Aminoácidos/genética , Fator 2 de Elongação de Peptídeos/genética , Fator 2 de Elongação de Peptídeos/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mutação
3.
Hum Mol Genet ; 29(24): 3892-3899, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33355653

RESUMO

Eukaryotic translation elongation factor 2 (eEF2) is a key regulatory factor in gene expression that catalyzes the elongation stage of translation. A functionally impaired eEF2, due to a heterozygous missense variant in the EEF2 gene, was previously reported in one family with spinocerebellar ataxia-26 (SCA26), an autosomal dominant adult-onset pure cerebellar ataxia. Clinical exome sequencing identified de novo EEF2 variants in three unrelated children presenting with a neurodevelopmental disorder (NDD). Individuals shared a mild phenotype comprising motor delay and relative macrocephaly associated with ventriculomegaly. Populational data and bioinformatic analysis underscored the pathogenicity of all de novo missense variants. The eEF2 yeast model strains demonstrated that patient-derived variants affect cellular growth, sensitivity to translation inhibitors and translational fidelity. Consequently, we propose that pathogenic variants in the EEF2 gene, so far exclusively associated with late-onset SCA26, can cause a broader spectrum of neurologic disorders, including childhood-onset NDDs and benign external hydrocephalus.


Assuntos
Quinase do Fator 2 de Elongação/genética , Exoma , Heterozigoto , Hidrocefalia/patologia , Mutação , Transtornos do Neurodesenvolvimento/patologia , Criança , Pré-Escolar , Humanos , Hidrocefalia/etiologia , Hidrocefalia/metabolismo , Masculino , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/metabolismo , Fenótipo , Sequenciamento do Exoma
4.
J Hum Genet ; 68(8): 543-550, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37072624

RESUMO

We report a 9-year-old Spanish boy with severe psychomotor developmental delay, short stature, microcephaly and abnormalities of the brain morphology, including cerebellar atrophy. Whole-exome sequencing (WES) uncovered two novel de novo variants, a hemizygous variant in CASK (Calcium/Calmodulin Dependent Serine Protein Kinase) and a heterozygous variant in EEF2 (Eukaryotic Translation Elongation Factor 2). CASK gene encodes the peripheral plasma membrane protein CASK that is a scaffold protein located at the synapses in the brain. The c.2506-6 A > G CASK variant induced two alternative splicing events that account for the 80% of the total transcripts, which are likely to be degraded by NMD. Pathogenic variants in CASK have been associated with severe neurological disorders such as mental retardation with or without nystagmus also called FG syndrome 4 (FGS4), and intellectual developmental disorder with microcephaly and pontine and cerebellar hypoplasia (MICPCH). Heterozygous variants in EEF2, which encodes the elongation factor 2 (eEF2), have been associated to Spinocerebellar ataxia 26 (SCA26) and more recently to a childhood-onset neurodevelopmental disorder with benign external hydrocephalus. The yeast model system used to investigate the functional consequences of the c.34 A > G EEF2 variant supported its pathogenicity by demonstrating it affects translational fidelity. In conclusion, the phenotype associated with the CASK variant is more severe and masks the milder phenotype of EEF2 variant.


Assuntos
Deficiência Intelectual , Microcefalia , Humanos , Microcefalia/genética , Mutação , Fator 2 de Elongação de Peptídeos/genética , Fenótipo , Deficiência Intelectual/genética
5.
Nucleic Acids Res ; 48(2): 770-787, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31799629

RESUMO

Variants in ribosomal protein (RP) genes drive Diamond-Blackfan anemia (DBA), a bone marrow failure syndrome that can also predispose individuals to cancer. Inherited and sporadic RP gene variants are also linked to a variety of phenotypes, including malignancy, in individuals with no anemia. Here we report an individual diagnosed with DBA carrying a variant in the 5'UTR of RPL9 (uL6). Additionally, we report two individuals from a family with multiple cancer incidences carrying a RPL9 missense variant. Analysis of cells from these individuals reveals that despite the variants both driving pre-rRNA processing defects and 80S monosome reduction, the downstream effects are remarkably different. Cells carrying the 5'UTR variant stabilize TP53 and impair the growth and differentiation of erythroid cells. In contrast, ribosomes incorporating the missense variant erroneously read through UAG and UGA stop codons of mRNAs. Metabolic profiles of cells carrying the 5'UTR variant reveal an increased metabolism of amino acids and a switch from glycolysis to gluconeogenesis while those of cells carrying the missense variant reveal a depletion of nucleotide pools. These findings indicate that variants in the same RP gene can drive similar ribosome biogenesis defects yet still have markedly different downstream consequences and clinical impacts.


Assuntos
Anemia de Diamond-Blackfan/genética , Processamento Pós-Transcricional do RNA/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Regiões 5' não Traduzidas/genética , Adolescente , Adulto , Anemia de Diamond-Blackfan/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Criança , Células Eritroides , Feminino , Humanos , Masculino , Mutação/genética , Precursores de RNA/genética , RNA Mensageiro/genética , Sequenciamento do Exoma
6.
J Biol Chem ; 295(31): 10741-10748, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32571880

RESUMO

Approximately 17 years after the severe acute respiratory syndrome coronavirus (SARS-CoV) epidemic, the world is currently facing the COVID-19 pandemic caused by SARS corona virus 2 (SARS-CoV-2). According to the most optimistic projections, it will take more than a year to develop a vaccine, so the best short-term strategy may lie in identifying virus-specific targets for small molecule-based interventions. All coronaviruses utilize a molecular mechanism called programmed -1 ribosomal frameshift (-1 PRF) to control the relative expression of their proteins. Previous analyses of SARS-CoV have revealed that it employs a structurally unique three-stemmed mRNA pseudoknot that stimulates high -1 PRF rates and that it also harbors a -1 PRF attenuation element. Altering -1 PRF activity impairs virus replication, suggesting that this activity may be therapeutically targeted. Here, we comparatively analyzed the SARS-CoV and SARS-CoV-2 frameshift signals. Structural and functional analyses revealed that both elements promote similar -1 PRF rates and that silent coding mutations in the slippery sites and in all three stems of the pseudoknot strongly ablate -1 PRF activity. We noted that the upstream attenuator hairpin activity is also functionally retained in both viruses, despite differences in the primary sequence in this region. Small-angle X-ray scattering analyses indicated that the pseudoknots in SARS-CoV and SARS-CoV-2 have the same conformation. Finally, a small molecule previously shown to bind the SARS-CoV pseudoknot and inhibit -1 PRF was similarly effective against -1 PRF in SARS-CoV-2, suggesting that such frameshift inhibitors may be promising lead compounds to combat the current COVID-19 pandemic.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/tratamento farmacológico , Desenho de Fármacos , Mudança da Fase de Leitura do Gene Ribossômico/efeitos dos fármacos , Pneumonia Viral/tratamento farmacológico , RNA Viral/genética , Betacoronavirus/química , COVID-19 , Regulação Viral da Expressão Gênica , Humanos , Pandemias , RNA Viral/química , SARS-CoV-2 , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
8.
bioRxiv ; 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32587971

RESUMO

17 years after the SARS-CoV epidemic, the world is facing the COVID-19 pandemic. COVID-19 is caused by a coronavirus named SARS-CoV-2. Given the most optimistic projections estimating that it will take over a year to develop a vaccine, the best short-term strategy may lie in identifying virus-specific targets for small molecule interventions. All coronaviruses utilize a molecular mechanism called -1 PRF to control the relative expression of their proteins. Prior analyses of SARS-CoV revealed that it employs a structurally unique three-stemmed mRNA pseudoknot to stimulate high rates of -1 PRF, and that it also harbors a -1 PRF attenuation element. Altering -1 PRF activity negatively impacts virus replication, suggesting that this molecular mechanism may be therapeutically targeted. Here we present a comparative analysis of the original SARS-CoV and SARS-CoV-2 frameshift signals. Structural and functional analyses revealed that both elements promote similar rates of -1 PRF and that silent coding mutations in the slippery sites and in all three stems of the pseudoknot strongly ablated -1 PRF activity. The upstream attenuator hairpin activity has also been functionally retained. Small-angle x-ray scattering indicated that the pseudoknots in SARS-CoV and SARS-CoV-2 had the same conformation. Finally, a small molecule previously shown to bind the SARS-CoV pseudoknot and inhibit -1 PRF was similarly effective against -1 PRF in SARS-CoV-2, suggesting that such frameshift inhibitors may provide promising lead compounds to counter the current pandemic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA