RESUMO
The interaction of the tumor necrosis factor receptor (TNFR) family member CD27 on naive CD8+ T (Tn) cells with homotrimeric CD70 on antigen-presenting cells (APCs) is necessary for T cell memory fate determination. Here, we examined CD27 signaling during Tn cell activation and differentiation. In conjunction with T cell receptor (TCR) stimulation, ligation of CD27 by a synthetic trimeric CD70 ligand triggered CD27 internalization and degradation, suggesting active regulation of this signaling axis. Internalized CD27 recruited the signaling adaptor TRAF2 and the phosphatase SHP-1, thereby modulating TCR and CD28 signals. CD27-mediated modulation of TCR signals promoted transcription factor circuits that induced memory rather than effector associated gene programs, which are induced by CD28 costimulation. CD27-costimulated chimeric antigen receptor (CAR)-engineered T cells exhibited improved tumor control compared with CD28-costimulated CAR-T cells. Thus, CD27 signaling during Tn cell activation promotes memory properties with relevance to T cell immunotherapy.
Assuntos
Antígenos CD28 , Redes Reguladoras de Genes , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Antígenos CD28/metabolismo , Transdução de Sinais , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Ligante CD27/genética , Ligante CD27/metabolismo , Linfócitos T CD8-PositivosRESUMO
In cancer, recurrent somatic single-nucleotide variants-which are rare in most paediatric cancers-are confined largely to protein-coding genes1-3. Here we report highly recurrent hotspot mutations (r.3A>G) of U1 spliceosomal small nuclear RNAs (snRNAs) in about 50% of Sonic hedgehog (SHH) medulloblastomas. These mutations were not present across other subgroups of medulloblastoma, and we identified these hotspot mutations in U1 snRNA in only <0.1% of 2,442 cancers, across 36 other tumour types. The mutations occur in 97% of adults (subtype SHHδ) and 25% of adolescents (subtype SHHα) with SHH medulloblastoma, but are largely absent from SHH medulloblastoma in infants. The U1 snRNA mutations occur in the 5' splice-site binding region, and snRNA-mutant tumours have significantly disrupted RNA splicing and an excess of 5' cryptic splicing events. Alternative splicing mediated by mutant U1 snRNA inactivates tumour-suppressor genes (PTCH1) and activates oncogenes (GLI2 and CCND2), and represents a target for therapy. These U1 snRNA mutations provide an example of highly recurrent and tissue-specific mutations of a non-protein-coding gene in cancer.
Assuntos
Neoplasias Cerebelares/genética , Proteínas Hedgehog/genética , Meduloblastoma/genética , RNA Nuclear Pequeno/genética , Adolescente , Adulto , Processamento Alternativo , Proteínas Hedgehog/metabolismo , Humanos , Mutação , Sítios de Splice de RNA , Splicing de RNARESUMO
Miniproteins are a diverse group of protein scaffolds characterized by small (1-10 kDa) size, stability, and versatility in drug-like roles. Coming largely from native sources, they have been widely adopted into drug development pipelines. While their structures and capabilities are diverse, the approaches to their utilization share more similarities with each other than with more widely used modalities (e.g., antibodies or small molecules). In this review, we highlight recent advances in miniprotein-based approaches to otherwise poorly addressed clinical needs, including structure-based and functional characterization. We also summarize their unique screening strategies and pharmacology considerations. Through a greater understanding of the unique properties that make them attractive for drug design, miniproteins can be effectively utilized against targets that are intractable by other approaches.
Assuntos
Desenvolvimento de Medicamentos , Proteínas , Animais , Humanos , Proteínas/química , Proteínas/metabolismoRESUMO
Naturally occurring, pharmacologically active peptides constrained with covalent crosslinks generally have shapes that have evolved to fit precisely into binding pockets on their targets. Such peptides can have excellent pharmaceutical properties, combining the stability and tissue penetration of small-molecule drugs with the specificity of much larger protein therapeutics. The ability to design constrained peptides with precisely specified tertiary structures would enable the design of shape-complementary inhibitors of arbitrary targets. Here we describe the development of computational methods for accurate de novo design of conformationally restricted peptides, and the use of these methods to design 18-47 residue, disulfide-crosslinked peptides, a subset of which are heterochiral and/or N-C backbone-cyclized. Both genetically encodable and non-canonical peptides are exceptionally stable to thermal and chemical denaturation, and 12 experimentally determined X-ray and NMR structures are nearly identical to the computational design models. The computational design methods and stable scaffolds presented here provide the basis for development of a new generation of peptide-based drugs.
Assuntos
Desenho Assistido por Computador , Desenho de Fármacos , Peptídeos/química , Peptídeos/síntese química , Estabilidade Proteica , Motivos de Aminoácidos , Cristalografia por Raios X , Ciclização , Dissulfetos/química , Temperatura Alta , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Peptídeos/genética , Peptídeos Cíclicos/química , Peptídeos Cíclicos/genética , Desnaturação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , EstereoisomerismoRESUMO
PURPOSE: Tumor infiltration by immunosuppressive myeloid cells or tumor-associated macrophages (TAMs) contributes to tumor progression and metastasis. In contrast to their adult counterparts, higher TAM signatures do not correlate with aggressive tumor behavior in pediatric brain tumors. While prominent TAM infiltrates exist before and after radiation, the degree to which irradiated macrophages and microglia support progression or leptomeningeal metastasis remains unclear. Patients with medulloblastoma often present with distant metastases and tumor recurrence is largely incurable, making them prime candidates for the study of novel approaches to prevent neuroaxis dissemination and recurrence. METHODS: Macrophage depletion was achieved using CSF-1 receptor inhibitors (CSF-1Ri), BLZ945 and AFS98, with or without whole brain radiation in a variety of medulloblastoma models, including patient-derived xenografts bearing Group 3 medulloblastoma and a transgenic Sonic Hedgehog (Ptch1+/-, Trp53-/-) medulloblastoma model. RESULTS: Effective reduction of microglia, TAM, and spinal cord macrophage with CSF-1Ri resulted in negligible effects on the rate of local and spinal recurrences or survival following radiation. Results were comparable between medulloblastoma subgroups. While notably few tumor-infiltrating lymphocytes (TILs) were detected, average numbers of CD3+ TILs and FoxP3+ Tregs did not differ between groups following treatment and tumor aggressiveness by Ki67 proliferation index was unaltered. CONCLUSION: In the absence of other microenvironmental influences, medulloblastoma-educated macrophages do not operate as tumor-supportive cells or promote leptomeningeal recurrence in these models. Our data add to a growing body of literature describing a distinct immunophenotype amid the medulloblastoma microenvironment and highlight the importance of appropriate pediatric modeling prior to clinical translation.
Assuntos
Neoplasias Cerebelares , Meduloblastoma , Transdução de Sinais , Criança , Proteínas Hedgehog , Humanos , Fator Estimulador de Colônias de Macrófagos , Macrófagos , Receptores Proteína Tirosina Quinases , Receptor de Fator Estimulador de Colônias de Macrófagos , Microambiente TumoralRESUMO
PURPOSE: Desmoplastic infantile astrocytoma (DIA) and desmoplastic infantile ganglioglioma (DIG) are classified together as grade I neuronal and mixed neuronal-glial tumor of the central nervous system by the World Health Organization (WHO). These tumors are rare and have not been well characterized in terms of clinical outcomes. We aimed to identify clinical predictors of mortality and tumor recurrence/progression by performing an individual patient data meta-analysis (IPDMA) of the literature. METHODS: A systematic literature review from 1970 to 2020 was performed, and individualized clinical data for patients diagnosed with DIA/DIG were extracted. Aggregated data were excluded from collection. Outcome measures of interest were mortality and tumor recurrence/progression, as well as time-to-event (TTE) for each of these. Participants without information on these outcome measures were excluded. Cox regression survival analyses were performed to determine predictors of mortality and tumor recurrence / progression. RESULTS: We identified 98 articles and extracted individual patient data from 188 patients. The cohort consisted of 58.9% males with a median age of 7 months. The majority (68.1%) were DIGs, while 24.5% were DIAs and 7.5% were non-specific desmoplastic infantile tumors; DIAs presented more commonly in deep locations (p = 0.001), with leptomeningeal metastasis (p = 0.001), and was associated with decreased probability of gross total resection (GTR; p = 0.001). Gender, age, and tumor pathology were not statistically significant predictors of either mortality or tumor recurrence/progression. On multivariate survival analysis, GTR was a predictor of survival (HR = 0.058; p = 0.007) while leptomeningeal metastasis at presentation was a predictor of mortality (HR = 3.27; p = 0.025). Deep tumor location (HR = 2.93; p = 0.001) and chemotherapy administration (HR = 2.02; p = 0.017) were associated with tumor recurrence/progression. CONCLUSION: Our IPDMA of DIA/DIG cases reported in the literature revealed that GTR was a predictor of survival while leptomeningeal metastasis at presentation was associated with mortality. Deep tumor location and chemotherapy were associated with tumor recurrence / progression.
Assuntos
Astrocitoma , Neoplasias Encefálicas , Ganglioglioma , Recidiva Local de Neoplasia , Astrocitoma/mortalidade , Astrocitoma/patologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Feminino , Ganglioglioma/mortalidade , Ganglioglioma/patologia , Humanos , Lactente , Masculino , Carcinomatose Meníngea/mortalidade , Recidiva Local de Neoplasia/epidemiologiaRESUMO
To identify key regulators of human brain tumor maintenance and initiation, we performed multiple genome-wide RNAi screens in patient-derived glioblastoma multiforme (GBM) stem cells (GSCs). These screens identified the plant homeodomain (PHD)-finger domain protein PHF5A as differentially required for GSC expansion, as compared with untransformed neural stem cells (NSCs) and fibroblasts. Given PHF5A's known involvement in facilitating interactions between the U2 snRNP complex and ATP-dependent helicases, we examined cancer-specific roles in RNA splicing. We found that in GSCs, but not untransformed controls, PHF5A facilitates recognition of exons with unusual C-rich 3' splice sites in thousands of essential genes. PHF5A knockdown in GSCs, but not untransformed NSCs, astrocytes, or fibroblasts, inhibited splicing of these genes, leading to cell cycle arrest and loss of viability. Notably, pharmacologic inhibition of U2 snRNP activity phenocopied PHF5A knockdown in GSCs and also in NSCs or fibroblasts overexpressing MYC. Furthermore, PHF5A inhibition compromised GSC tumor formation in vivo and inhibited growth of established GBM patient-derived xenograft tumors. Our results demonstrate a novel viability requirement for PHF5A to maintain proper exon recognition in brain tumor-initiating cells and may provide new inroads for novel anti-GBM therapeutic strategies.
Assuntos
Neoplasias Encefálicas/fisiopatologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Glioblastoma/fisiopatologia , Interferência de RNA , Animais , Neoplasias Encefálicas/genética , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Proliferação de Células , Sobrevivência Celular/genética , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Estudo de Associação Genômica Ampla , Glioblastoma/genética , Humanos , Camundongos , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA , Transativadores , Transplante HeterólogoRESUMO
INTRODUCTION: Beyond focal radiation, there is no consensus standard therapy for pediatric high-grade glioma (pHGG) and outcomes remain dismal. We describe the largest molecularly-characterized cohort of children with pHGG treated with a 3-drug maintenance regimen of temozolomide, irinotecan, and bevacizumab (TIB) following radiation. METHODS: We retrospectively reviewed 36 pediatric patients treated with TIB at Seattle Children's Hospital from 2009 to 2018 and analyzed survival using the Kaplan-Meier method. Molecular profiling was performed by targeted DNA sequencing and toxicities, steroid use, and palliative care utilization were evaluated. RESULTS: Median age at diagnosis was 10.9 years (18 months-18 years). Genetic alterations were detected in 26 genes and aligned with recognized molecular subgroups including H3 K27M-mutant (12), H3F3A G34-mutant (2), IDH-mutant (4), and hypermutator profiles (4). Fifteen patients (42%) completed 12 planned cycles of maintenance. Side effects associated with chemotherapy delays or modifications included thrombocytopenia (28%) and nausea/vomiting (19%), with temozolomide dosing most frequently modified. Median event-free survival (EFS) and overall survival (OS) was 16.2 and 20.1 months, with shorter survival seen in DIPG (9.3 and 13.3 months, respectively). Survival at 1, 2, and 5 years was 80%, 10% and 0% for DIPG and 85%, 38%, and 16% for other pHGG. CONCLUSION: Our single-center experience demonstrates tolerability of this 3-drug regimen, with prolonged survival in DIPG compared to historical single-agent temozolomide. pHGG survival was comparable to analogous 3-drug regimens and superior to historical agents; however, cure was rare. Children with pHGG remain excellent candidates for the study of novel therapeutics combined with standard therapy.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias do Tronco Encefálico/tratamento farmacológico , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Glioma/tratamento farmacológico , Adolescente , Bevacizumab/administração & dosagem , Neoplasias do Tronco Encefálico/patologia , Criança , Pré-Escolar , Glioma Pontino Intrínseco Difuso/patologia , Feminino , Seguimentos , Glioma/patologia , Humanos , Lactente , Irinotecano/administração & dosagem , Masculino , Gradação de Tumores , Estudos Retrospectivos , Taxa de Sobrevida , Temozolomida/administração & dosagemRESUMO
BACKGROUND: Protein based therapeutics are one of the fastest growing classes of novel medical interventions in areas such as cancer, infectious disease, and inflammation. Protein engineering plays an important role in the optimization of desired therapeutic properties such as reducing immunogenicity, increasing stability for storage, increasing target specificity, etc. One category of protein therapeutics is nature-inspired bioengineered cystine-dense peptides (CDPs) for various biological targets. These engineered proteins are often further modified by synthetic chemistry. For example, candidate mini-proteins can be conjugated into active small molecule drugs. We refer to modified mini-proteins as "Optides" (Optimized peptides). To efficiently serve the multidisciplinary lab scientists with varied therapeutic portfolio research goals in a non-commercial setting, a cost effective extendable laboratory information management system (LIMS) is/was needed. RESULTS: We have developed a LIMS named Optide-Hunter for a generalized engineered protein compounds workflow that tracks entities and assays from creation to preclinical experiments. The implementation and custom modules are built using LabKey server, which is an Open Source platform for scientific data integration and analysis. Optide-Hunter contains a compound registry, in-silico assays, high throughput production, large-scale production, in vivo assays and data extraction from a specimen-tracking database. It is used to store, extract, and view data for various therapeutics projects. Optide-Hunter also includes external processing stand-alone software (HPLCPeakClassifierApp) for automated chromatogram classification. The HPLCPeakClassifierApp is used for pre-processing of HPLC data prior to loading to Optide-Hunter. The custom implementation is done using data transformation modules in R, SQL, javascript, and java and is Open Source to assist new users in customizing it for their unique workflows. Instructions for exploring a deployed version of Optide-Hunter can be found at https://www.labkey.com/case%20study/optide-hunter CONCLUSION: The Optide-Hunter LIMS system is designed and built to track the process of engineering, producing and prioritizing protein therapeutic candidates. It can be easily adapted and extended for use in small or large research laboratories where multidisciplinary scientists are collaborating to engineer compounds for potential therapeutic or protein science applications. Open Source exploration of Optide-Hunter can help any bioinformatics scientist adapt, extend, and deploy an equivalent system tailored to each laboratory's workflow.
Assuntos
Laboratórios , Engenharia de Proteínas , Proteínas/uso terapêutico , Software , Automação , Humanos , Gestão da Informação , Interface Usuário-Computador , Fluxo de TrabalhoRESUMO
BLZ-100 is a single intravenous use, fluorescent imaging agent that labels tumor tissue to enable more complete and precise surgical resection. It is composed of a chlorotoxin peptide covalently bound to the near-infrared fluorophore indocyanine green. BLZ-100 is in clinical development for intraoperative visualization of human tumors. The nonclinical safety and pharmacokinetic (PK) profile of BLZ-100 was evaluated in mice, rats, canines, and nonhuman primates (NHP). Single bolus intravenous administration of BLZ-100 was well tolerated, and no adverse changes were observed in cardiovascular safety pharmacology, PK, and toxicology studies in rats and NHP. The single-dose no-observed-adverse-effect-levels (NOAELs) were 7 mg (28 mg/kg) in rats and 60 mg (20 mg/kg) in NHP, corresponding to peak concentration values of 89 400 and 436 000 ng/mL and area-under-the-curve exposure values of 130 000 and 1 240 000 h·ng/mL, respectively. Based on a human imaging dose of 3 mg, dose safety margins are >100 for rat and monkey. BLZ-100 produced hypersensitivity reactions in canine imaging studies (lethargy, pruritus, swollen muzzle, etc). The severity of the reactions was not dose related. In a follow-up study in dogs, plasma histamine concentrations were increased 5 to 60 minutes after BLZ-100 injection; this coincided with signs of hypersensitivity, supporting the conclusion that the reactions were histamine based. Hypersensitivity reactions were not observed in other species or in BLZ-100 human clinical studies conducted to date. The combined imaging, safety pharmacology, PK, and toxicology studies contributed to an extensive initial nonclinical profile for BLZ-100, supporting first-in-human clinical trials.
Assuntos
Corantes Fluorescentes , Verde de Indocianina/análogos & derivados , Venenos de Escorpião , Animais , Proteínas do Sistema Complemento/análise , Cães , Hipersensibilidade a Drogas/sangue , Feminino , Corantes Fluorescentes/farmacocinética , Corantes Fluorescentes/toxicidade , Células HEK293 , Histamina/sangue , Humanos , Verde de Indocianina/farmacocinética , Verde de Indocianina/toxicidade , Macaca fascicularis , Masculino , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Ratos Sprague-Dawley , Venenos de Escorpião/sangue , Venenos de Escorpião/farmacocinética , Venenos de Escorpião/toxicidadeRESUMO
The Sonic Hedgehog (Shh) pathway drives a subset of medulloblastomas, a malignant neuroectodermal brain cancer, and other cancers. Small-molecule Shh pathway inhibitors have induced tumor regression in mice and patients with medulloblastoma; however, drug resistance rapidly emerges, in some cases via de novo mutation of the drug target. Here we assess the response and resistance mechanisms to the natural product derivative saridegib in an aggressive Shh-driven mouse medulloblastoma model. In this model, saridegib treatment induced tumor reduction and significantly prolonged survival. Furthermore, the effect of saridegib on tumor-initiating capacity was demonstrated by reduced tumor incidence, slower growth, and spontaneous tumor regression that occurred in allografts generated from previously treated autochthonous medulloblastomas compared with those from untreated donors. Saridegib, a known P-glycoprotein (Pgp) substrate, induced Pgp activity in treated tumors, which likely contributed to emergence of drug resistance. Unlike other Smoothened (Smo) inhibitors, the drug resistance was neither mutation-dependent nor Gli2 amplification-dependent, and saridegib was found to be active in cells with the D473H point mutation that rendered them resistant to another Smo inhibitor, GDC-0449. The fivefold increase in lifespan in mice treated with saridegib as a single agent compares favorably with both targeted and cytotoxic therapies. The absence of genetic mutations that confer resistance distinguishes saridegib from other Smo inhibitors.
Assuntos
Meduloblastoma/tratamento farmacológico , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Alcaloides de Veratrum/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Sequência de Bases , Western Blotting , Hibridização Genômica Comparativa , Primers do DNA/genética , Resistencia a Medicamentos Antineoplásicos , Citometria de Fluxo , Perfilação da Expressão Gênica , Imuno-Histoquímica , Fatores de Transcrição Kruppel-Like/genética , Imageamento por Ressonância Magnética , Meduloblastoma/patologia , Camundongos , Dados de Sequência Molecular , Projetos Piloto , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Receptor Smoothened , Análise de Sobrevida , Alcaloides de Veratrum/uso terapêutico , Proteína Gli2 com Dedos de ZincoRESUMO
Medulloblastoma is curable in approximately 70% of patients. Over the past decade, progress in improving survival using conventional therapies has stalled, resulting in reduced quality of life due to treatment-related side effects, which are a major concern in survivors. The vast amount of genomic and molecular data generated over the last 5-10 years encourages optimism that improved risk stratification and new molecular targets will improve outcomes. It is now clear that medulloblastoma is not a single-disease entity, but instead consists of at least four distinct molecular subgroups: WNT/Wingless, Sonic Hedgehog, Group 3, and Group 4. The Medulloblastoma Down Under 2013 meeting, which convened at Bunker Bay, Australia, brought together 50 leading clinicians and scientists. The 2-day agenda included focused sessions on pathology and molecular stratification, genomics and mouse models, high-throughput drug screening, and clinical trial design. The meeting established a global action plan to translate novel biologic insights and drug targeting into treatment regimens to improve outcomes. A consensus was reached in several key areas, with the most important being that a novel classification scheme for medulloblastoma based on the four molecular subgroups, as well as histopathologic features, should be presented for consideration in the upcoming fifth edition of the World Health Organization's classification of tumours of the central nervous system. Three other notable areas of agreement were as follows: (1) to establish a central repository of annotated mouse models that are readily accessible and freely available to the international research community; (2) to institute common eligibility criteria between the Children's Oncology Group and the International Society of Paediatric Oncology Europe and initiate joint or parallel clinical trials; (3) to share preliminary high-throughput screening data across discovery labs to hasten the development of novel therapeutics. Medulloblastoma Down Under 2013 was an effective forum for meaningful discussion, which resulted in enhancing international collaborative clinical and translational research of this rare disease. This template could be applied to other fields to devise global action plans addressing all aspects of a disease, from improved disease classification, treatment stratification, and drug targeting to superior treatment regimens to be assessed in cooperative international clinical trials.
Assuntos
Neoplasias Cerebelares , Agências Internacionais , Meduloblastoma , Adolescente , Animais , Antineoplásicos/uso terapêutico , Austrália , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Criança , Pré-Escolar , Modelos Animais de Doenças , Genômica , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/patologia , CamundongosRESUMO
Pediatric high-grade gliomas are highly invasive and essentially incurable. Glioma cells migrate between neurons and glia, along axon tracts, and through extracellular matrix surrounding blood vessels and underlying the pia. Mechanisms that allow adaptation to such complex environments are poorly understood. N-cadherin is highly expressed in pediatric gliomas and associated with shorter survival. We found that intercellular homotypic N-cadherin interactions differentially regulate glioma migration according to the microenvironment, stimulating migration on cultured neurons or astrocytes but inhibiting invasion into reconstituted or astrocyte-deposited extracellular matrix. N-cadherin localizes to filamentous connections between migrating leader cells but to epithelial-like junctions between followers. Leader cells have more surface and recycling N-cadherin, increased YAP1/TAZ signaling, and increased proliferation relative to followers. YAP1/TAZ signaling is dynamically regulated as leaders and followers change position, leading to altered N-cadherin levels and organization. Together, the results suggest that pediatric glioma cells adapt to different microenvironments by regulating N-cadherin dynamics and cell-cell contacts.
Assuntos
Caderinas , Glioma , Criança , Humanos , Astrócitos , Axônios , Caderinas/metabolismo , Movimento Celular , Glioma/metabolismo , Glioma/patologia , Microambiente TumoralRESUMO
Pediatric high-grade gliomas are highly invasive and essentially incurable. Glioma cells migrate between neurons and glia, along axon tracts, and through extracellular matrix surrounding blood vessels and underlying the pia. Mechanisms that allow adaptation to such complex environments are poorly understood. N-cadherin is highly expressed in pediatric gliomas and associated with shorter survival. We found that inter-cellular homotypic N-cadherin interactions differentially regulate glioma migration according to the microenvironment, stimulating migration on cultured neurons or astrocytes but inhibiting invasion into reconstituted or astrocyte-deposited extracellular matrix. N-cadherin localizes to filamentous connections between migrating leader cells but to epithelial-like junctions between followers. Leader cells have more surface and recycling N-cadherin, increased YAP1/TAZ signaling, and increased proliferation relative to followers. YAP1/TAZ signaling is dynamically regulated as leaders and followers change position, leading to altered N-cadherin levels and organization. Together, the results suggest that pediatric glioma cells adapt to different microenvironments by regulating N-cadherin dynamics and cell-cell contacts.
RESUMO
Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. To identify genes differentially required for the viability of GBM stem-like cells (GSCs), we performed functional genomic lethality screens comparing GSCs and control human neural stem cells. Among top-scoring hits in a subset of GBM cells was the F-box-containing gene FBXO42, which was also predicted to be essential in â¼15% of cell lines derived from a broad range of cancers. Mechanistic studies revealed that, in sensitive cells, FBXO42 activity prevents chromosome alignment defects, mitotic cell cycle arrest and cell death. The cell cycle arrest, but not the cell death, triggered by FBXO42 inactivation could be suppressed by brief exposure to a chemical inhibitor of Mps1, a key spindle assembly checkpoint (SAC) kinase. FBXO42's cancer-essential function requires its F-box and Kelch domains, which are necessary for FBXO42's substrate recognition and targeting by SCF (SKP1-CUL1-F-box protein) ubiquitin ligase complex. However, none of FBXO42's previously proposed targets, including ING4, p53 and RBPJ, were responsible for the observed phenotypes. Instead, our results suggest that FBOX42 alters the activity of one or more proteins that perturb chromosome-microtubule dynamics in cancer cells, which in turn leads to induction of the SAC and cell death.
RESUMO
Many disease-causing proteins have multiple pathogenic mechanisms, and conventional inhibitors struggle to reliably disrupt more than one. Targeted protein degradation (TPD) can eliminate the protein, and thus all its functions, by directing a cell's protein turnover machinery towards it. Two established strategies either engage catalytic E3 ligases or drive uptake towards the endolysosomal pathway. Here we describe CYpHER (CatalYtic pH-dependent Endolysosomal delivery with Recycling) technology with potency and durability from a catalytic mechanism that shares the specificity and straightforward modular design of endolysosomal uptake. By bestowing pH-dependent release on the target engager and using the rapid-cycling transferrin receptor as the uptake receptor, CYpHER induces endolysosomal delivery of surface and extracellular targets while re-using drug, potentially yielding increased potency and reduced off-target tissue exposure risks. The TfR-based approach allows targeting to tumors that overexpress this receptor and offers the potential for transport to the CNS. CYpHER function was demonstrated in vitro with EGFR and PD-L1, and in vivo with EGFR in a model of EGFR-driven non-small cell lung cancer.
Assuntos
Receptores ErbB , Lisossomos , Proteólise , Receptores da Transferrina , Humanos , Proteólise/efeitos dos fármacos , Receptores da Transferrina/metabolismo , Animais , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Lisossomos/metabolismo , Camundongos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Concentração de Íons de Hidrogênio , Antígeno B7-H1/metabolismo , Feminino , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Catálise , Endossomos/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Many disease-causing proteins have multiple pathogenic mechanisms, and conventional inhibitors struggle to reliably disrupt more than one. Targeted protein degradation (TPD) can eliminate the protein, and thus all its functions, by directing a cell's protein turnover machinery towards it. Two established strategies either engage catalytic E3 ligases or drive uptake towards the endolysosomal pathway. Here we describe CYpHER (CatalYtic pH-dependent Endolysosomal delivery with Recycling) technology with potency and durability from a novel catalytic mechanism that shares the specificity and straightforward modular design of endolysosomal uptake. By bestowing pH-dependent release on the target engager and using the rapid-cycling transferrin receptor as the uptake receptor, CYpHER induces endolysosomal target delivery while re-using drug, potentially yielding increased potency and reduced off-target tissue exposure risks. The TfR-based approach allows targeting to tumors that overexpress this receptor and offers the potential for transport to the CNS. CYpHER function was demonstrated in vitro with EGFR and PD-L1, and in vivo with EGFR in a model of EGFR-driven non-small cell lung cancer.
RESUMO
Brain tumors are the most common solid tumor in children and the leading cause of cancer-related deaths. Over the last few years, improvements have been made in the diagnosis and treatment of children with Central Nervous System tumors. Unfortunately, for many patients with high-grade tumors, the overall prognosis remains poor. Lower survival rates are partly attributed to the lack of efficacious therapies. The advent and success of immune checkpoint inhibitors (ICIs) in adults have sparked interest in investigating the utility of these therapies alone or in combination with other drug treatments in pediatric patients. However, to achieve improved clinical outcomes, the establishment and selection of relevant and robust preclinical pediatric high-grade brain tumor models is imperative. Here, we review the information that influenced our model selection as we embarked on an international collaborative study to test ICIs in combination with epigenetic modifying agents to enhance adaptive immunity to treat pediatric brain tumors. We also share challenges that we faced and potential solutions.
Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Humanos , Criança , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Imunoterapia , Neoplasias do Sistema Nervoso Central/terapiaRESUMO
The expression of a synthetic chimeric antigen receptor (CAR) to redirect antigen specificity of T cells is transforming the treatment of hematological malignancies and autoimmune diseases [1-7]. In cancer, durable efficacy is frequently limited by the escape of tumors that express low levels or lack the target antigen [8-12]. These clinical results emphasize the need for immune receptors that combine high sensitivity and multispecificity to improve outcomes. Current mono- and bispecific CARs do not faithfully recapitulate T cell receptor (TCR) function and require high antigen levels on tumor cells for recognition [13-17]. Here, we describe a novel synthetic chimeric TCR (ChTCR) that exhibits superior antigen sensitivity and is readily adapted for bispecific targeting. Bispecific ChTCRs mimic TCR structure, form classical immune synapses, and exhibit TCR-like proximal signaling. T cells expressing Bi-ChTCRs more effectively eliminated tumors with heterogeneous antigen expression in vivo compared to T cells expressing optimized bispecific CARs. The Bi-ChTCR architecture is resilient and can be designed to target multiple B cell lineage and multiple myeloma antigens. Our findings identify a broadly applicable approach for engineering T cells to target hematologic malignancies with heterogeneous antigen expression, thereby overcoming the most frequent mechanism of relapse after current CAR T therapies.
RESUMO
BACKGROUND: The paucity of tumor-specific targets for chimeric antigen receptor (CAR) T-cell therapy of solid tumors necessitates careful preclinical evaluation of the therapeutic window for candidate antigens. Human epidermal growth factor receptor 2 (HER2) is an attractive candidate for CAR T-cell therapy in humans but has the potential for eliciting on-target off-tumor toxicity. We developed an immunocompetent tumor model of CAR T-cell therapy targeting murine HER2 (mHER2) and examined the effect of CAR affinity, T-cell dose, and lymphodepletion on safety and efficacy. METHODS: Antibodies specific for mHER2 were generated, screened for affinity and specificity, tested for immunohistochemical staining of HER2 on normal tissues, and used for HER2-targeted CAR design. CAR candidates were evaluated for T-cell surface expression and the ability to induce T-cell proliferation, cytokine production, and cytotoxicity when transduced T cells were co-cultured with mHER2+ tumor cells in vitro. Safety and efficacy of various HER2 CARs was evaluated in two tumor models and normal non-tumor-bearing mice. RESULTS: Mice express HER2 in the same epithelial tissues as humans, rendering these tissues vulnerable to recognition by systemically administered HER2 CAR T cells. CAR T cells designed with single-chain variable fragment (scFvs) that have high-affinity for HER2 infiltrated and caused toxicity to normal HER2-positive tissues but exhibited poor infiltration into tumors and antitumor activity. In contrast, CAR T cells designed with an scFv with low-affinity for HER2 infiltrated HER2-positive tumors and controlled tumor growth without toxicity. Toxicity mediated by high-affinity CAR T cells was independent of tumor burden and correlated with proliferation of CAR T cells post infusion. CONCLUSIONS: Our findings illustrate the disadvantage of high-affinity CARs for targets such as HER2 that are expressed on normal tissues. The use of low-affinity HER2 CARs can safely regress tumors identifying a potential path for therapy of solid tumors that exhibit high levels of HER2.