Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(22): 6644-6650, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38767455

RESUMO

Phase separation is an intriguing phenomenon often found in III-V nanostructures, but its effect on the atomic and electronic structures of III-V nanomaterials is still not fully understood. Here we study the variations in atomic arrangement and band structure due to the coexistence of wurtzite (WZ) and zinc blende (ZB) phases in single GaAs nanowires by using scanning transmission electron microscopy and monochromated electron energy loss spectroscopy. The WZ lattice distances are found to be larger (by ∼1%), along both the nanowire length direction and the perpendicular direction, than the ZB lattice. The band gap of the WZ phase is ∼20 meV smaller than that of the ZB phase. A shift of ∼70 meV in the conduction band edge between the two phases is also found. The direct and local measurements in single GaAs nanowires reveal important effects of phase separation on the properties of individual III-V nanostructures.

2.
Soft Matter ; 18(16): 3206-3217, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35383800

RESUMO

Porous phase-separated ethylcellulose/hydroxypropylcellulose (EC/HPC) films are used to control drug transport from pharmaceutical pellets. The drug transport rate is determined by the structure of the porous films that are formed as water-soluble HPC leaches out. However, a detailed understanding of the evolution of the phase-separated structure in the films is lacking. In this work, we have investigated EC/HPC films produced by spin-coating, mimicking the industrial fluidized bed spraying. The aim was to investigate film structure evolution and coarsening kinetics during solvent evaporation. The structure evolution was characterized using confocal laser scanning microscopy and image analysis. The effect of the EC:HPC ratio (15 to 85 wt% HPC) on the structure evolution was determined. Bicontinuous structures were found for 30 to 40 wt% HPC. The growth of the characteristic length scale followed a power law, L(t) ∼ t(n), with n ∼ 1 for bicontinuous structures, and n ∼ 0.45-0.75 for discontinuous structures. The characteristic length scale after kinetic trapping ranged between 3.0 and 6.0 µm for bicontinuous and between 0.6 and 1.6 µm for discontinuous structures. Two main coarsening mechanisms could be identified: interfacial tension-driven hydrodynamic growth for bicontinuous structures and diffusion-driven coalescence for discontinuous structures. The 2D in-plane interface curvature analysis showed that the mean curvature decreased as a function of time for bicontinuous structures, confirming that interfacial tension is driving the growth. The findings of this work provide a good understanding of the mechanisms responsible for morphology development and open for further tailoring of thin EC/HPC film structures for controlled drug release.


Assuntos
Água , Celulose/análogos & derivados , Cinética , Porosidade , Solventes , Água/química
3.
Nano Lett ; 21(21): 9038-9043, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34704766

RESUMO

III-V compound nanowires have electrical and optical properties suitable for a wide range of applications, including photovoltaics and photodetectors. Furthermore, their elastic nature allows the use of strain engineering to enhance their performance. Here we have investigated the effect of mechanical strain on the photocurrent and the electrical properties of single GaAs nanowires with radial p-i-n junctions, using a nanoprobing setup. A uniaxial tensile strain of 3% resulted in an increase in photocurrent by more than a factor of 4 during NIR illumination. This effect is attributed to a decrease of 0.2 eV in nanowire bandgap energy, revealed by analysis of the current-voltage characteristics as a function of strain. This analysis also shows how other properties are affected by the strain, including the nanowire resistance. Furthermore, electron-beam-induced current maps show that the charge collection efficiency within the nanowire is unaffected by strain measured up to 0.9%.

4.
Nano Lett ; 21(9): 3894-3900, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33914543

RESUMO

Strain engineering provides an effective way of tailoring the electronic and optoelectronic properties of semiconductor nanomaterials and nanodevices, giving rise to novel functionalities. Here, we present direct experimental evidence of strain-induced modifications of hole mobility in individual gallium arsenide (GaAs) nanowires, using in situ transmission electron microscopy (TEM). The conductivity of the nanowires varied with applied uniaxial tensile stress, showing an initial decrease of ∼5-20% up to a stress of 1-2 GPa, subsequently increasing up to the elastic limit of the nanowires. This is attributed to a hole mobility variation due to changes in the valence band structure caused by stress and strain. The corresponding lattice strain in the nanowires was quantified by in situ four dimensional scanning TEM and showed a complex spatial distribution at all stress levels. Meanwhile, a significant red shift of the band gap induced by the stress and strain was unveiled by monochromated electron energy loss spectroscopy.

5.
Nat Mater ; 19(7): 738-744, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32152564

RESUMO

Doping of organic semiconductors is crucial for the operation of organic (opto)electronic and electrochemical devices. Typically, this is achieved by adding heterogeneous dopant molecules to the polymer bulk, often resulting in poor stability and performance due to dopant sublimation or aggregation. In small-molecule donor-acceptor systems, charge transfer can yield high and stable electrical conductivities, an approach not yet explored in all-conjugated polymer systems. Here, we report ground-state electron transfer in all-polymer donor-acceptor heterojunctions. Combining low-ionization-energy polymers with high-electron-affinity counterparts yields conducting interfaces with resistivity values five to six orders of magnitude lower than the separate single-layer polymers. The large decrease in resistivity originates from two parallel quasi-two-dimensional electron and hole distributions reaching a concentration of ∼1013 cm-2. Furthermore, we transfer the concept to three-dimensional bulk heterojunctions, displaying exceptional thermal stability due to the absence of molecular dopants. Our findings hold promise for electro-active composites of potential use in, for example, thermoelectrics and wearable electronics.

6.
J Microsc ; 283(1): 51-63, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33797085

RESUMO

Phase-separated polymer films are commonly used as coatings around pharmaceutical oral dosage forms (tablets or pellets) to facilitate controlled drug release. A typical choice is to use ethyl cellulose and hydroxypropyl cellulose (EC/HPC) polymer blends. When an EC/HPC film is in contact with water, the leaching out of the water-soluble HPC phase produces an EC film with a porous network through which the drug is transported. The drug release can be tailored by controlling the structure of this porous network. Imaging and characterization of such EC porous films facilitates understanding of how to control and tailor film formation and ultimately drug release. Combined focused ion beam and scanning electron microscope (FIB-SEM) tomography is a well-established technique for high-resolution imaging, and suitable for this application. However, for segmenting image data, in this case to correctly identify the porous network, FIB-SEM is a challenging technique to work with. In this work, we implement convolutional neural networks for segmentation of FIB-SEM image data. The data are acquired from three EC porous films where the HPC phases have been leached out. The three data sets have varying porosities in a range of interest for controlled drug release applications. We demonstrate very good agreement with manual segmentations. In particular, we demonstrate an improvement in comparison to previous work on the same data sets that utilized a random forest classifier trained on Gaussian scale-space features. Finally, we facilitate further development of FIB-SEM segmentation methods by making the data and software used open access.


Drug release from pharmaceutical tablets or pellets is often controlled by applying a phase-separated polymer film coating. Ethyl cellulose and hydroxypropyl cellulose (EC/HPC) polymer blends are commonly used. The HPC phase leaches out when in contact with water and the result is a porous EC matrix coating, with mass transport properties that can be controlled by tailoring the structure of the porous network. High-resolution 3D imaging is necessary to characterize such materials, and the resolution of e.g. X-ray computed tomography is simply insufficient. Combined focused ion beam and scanning electron microscope (FIB-SEM) tomography on the other hand is a suitable technique, but segmentation of FIB-SEM data, in this case to separate the solid matrix and the porous network, is challenging. In this work, we develop a method for segmentation of FIB-SEM image data acquired from three different EC porous films where the HPC phases have been leached out. The segmentation is based on convolutional neural networks (CNNs). CNNs is a well-established machine learning paradigm and has demonstrated state-of-the-art performance in many image analysis and segmentation tasks. CNNs are inspired from biological processes in the visual cortex and act similarly, at least conceptually. In contrast to most conventional machine learning algorithms, CNNs learn by themselves which features to extract from the images. The features are extracted at different spatial scales and may constitute e.g. edge and contrast detectors. These features are subsequently used for classification. In this work, CNNs are used for image segmentation. The goal is to identify which regions in the images that contain either pore (empty space) or solid (material), hence a binary classification task. For the CNN to learn how to perform such a task, a ground truth is needed. This is achieved by letting an expert manually segment parts of the data. This is a very time-consuming endeavor, hence only a small random subset of the full dataset is manually segmented. The CNN is trained for the task using the manually segmented data, after which automatic segmentation of the full dataset is performed. We obtain very good agreement with manual segmentations in terms of accuracy and porosity, and a clear improvement in comparison to an earlier developed random forest classifier trained on Gaussian scale-space features on the same data. The development of accurate segmentation methods is a crucial step toward better understanding and tailoring of coatings for controlled drug release.


Assuntos
Polímeros , Água , Liberação Controlada de Fármacos , Redes Neurais de Computação , Porosidade
7.
Soft Matter ; 17(14): 3913-3922, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33710242

RESUMO

Porous phase-separated films made of ethylcellulose (EC) and hydroxypropylcellulose (HPC) are commonly used for controlled drug release. The structure of these thin films is controlling the drug transport from the core to the surrounding liquids in the stomach or intestine. However, detailed understanding of the time evolution of these porous structures as they are formed remains elusive. In this work, spin-coating, a widely applied technique for making thin uniform polymer films, was used to mimic the industrial manufacturing process. The focus of this work was on understanding the structure evolution of phase-separated spin-coated EC/HPC films. The structure evolution was determined using confocal laser scanning microscopy (CLSM) and image analysis. In particular, we determined the influence of spin-coating parameters and EC : HPC ratio on the final phase-separated structure and the film thickness. The film thickness was determined by profilometry and it influences the ethanol solvent evaporation rate and thereby the phase separation kinetics. The spin speed was varied between 1000 and 10 000 rpm and the ratio of EC : HPC in the polymer blend was varied between 78 : 22 wt% and 40 : 60 wt%. The obtained CLSM micrographs showed phase separated structures, typical for the spinodal decomposition phase separation mechanism. By using confocal laser scanning microscopy combined with Fourier image analysis, we could extract the characteristic length scale of the phase-separated final structure. Varying spin speed and EC : HPC ratio gave us precise control over the characteristic length scale and the thickness of the film. The results showed that the characteristic length scale increases with decreasing spin speed and with increasing HPC ratio. The thickness of the spin-coated film decreases with increasing spin speed. It was found that the relation between film thickness and spin speed followed the Meyerhofer equation with an exponent close to 0.5. Furthermore, good correlations between thickness and spin speed were found for the compositions 22 wt% HPC, 30 wt% HPC and 45 wt% HPC. These findings give a good basis for understanding the mechanisms responsible for the morphology development and increase the possibilities to tailor thin EC/HPC film structures.


Assuntos
Celulose , Polímeros , Celulose/análogos & derivados , Solventes
8.
Paediatr Anaesth ; 31(6): 631-636, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33687794

RESUMO

BACKGROUND: Naloxone has a high affinity for the µ-opioid receptor and acts as a competitive antagonist, thus reversing the effects of opioids. Naloxone is often administrated intravenously, but there is a growing interest in the intranasal route in treating patients with opioid overdose, and in reversing effects after therapeutic use of opioids. As administration is painless and no intravenous access is needed, the intranasal route is especially useful in children. AIM: The aim of this study was to investigate the uptake of naloxone 0.4 mg/ml during the first 20 min after administration as a nasal spray in a pediatric population, with special focus on the time to achieve maximum plasma concentration. METHODS: Twenty children, 6 months-10 years, were included in the study. The naloxone dose administered was 20 µg/kg, maximum 0.4 mg, divided into repeated doses of 0.1 ml in each nostril. Venous blood samples were collected at 5, 10, and 20 min after the end of administration. RESULTS: All patients had quantifiable concentrations of naloxone in venous blood at 5 min, and within 20 min, peak concentration had been reached in more than half of the children. At 20 min after intranasal administration, the plasma naloxone concentrations were within the range of 2-6 nanogram/ml. CONCLUSION: This study confirms the clinical experience that the rapid effect of naloxone after intranasal administration in children was reflected in rapid systemic uptake to achieve higher peak plasma concentrations than previously reported in adults.


Assuntos
Overdose de Drogas , Naloxona , Administração Intranasal , Adulto , Criança , Overdose de Drogas/tratamento farmacológico , Humanos , Naloxona/uso terapêutico , Antagonistas de Entorpecentes/uso terapêutico , Sprays Nasais
9.
Langmuir ; 36(7): 1745-1753, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32032489

RESUMO

Surfactants are used widely to control the synthesis of shaped noble-metal nanoparticles. In this work, a mixture of hexadecyltrimethylammonium bromide (CTAB), a cationic surfactant; sodium oleate (NaOL), an anionic surfactant; palladium chloride; and a reducing agent were used in the seed-mediated synthesis of palladium nanoparticles. By controlling the surfactant mixture ratio, we initially discovered that palladium nanodendrites with narrow size distribution were formed instead of the traditional nanocubes, synthesized with only CTAB. In order to investigate the optimal ratio to produce Pd nanodendrites with a high yield and narrow size distribution, samples synthesized with multiple molar ratios of the two surfactants were prepared and studied by transmission electron microscopy, dynamic light scattering, conductance, and ultraviolet-visible spectroscopy. We propose that the addition of NaOL alters the arrangement of surfactants on the Pd seed surface, leading to a new pattern of growth and aggregation. By studying the nanodendrite growth over time, we identified the reduction period of Pd2+ ions and the formation period of the nanodendrites. Our further experiments, including the replacement of CTAB with hexadecyltrimethylammonium chloride (CTAC) and the replacement of NaOL with sodium stearate, showed that CTA+ ions in CTAB and OL- ions in NaOL play the main roles in the formation of nanodendrites. The formation of palladium nanodendrites was robust and achieved with a range of temperatures, pH and mixing speeds.

10.
Microsc Microanal ; 26(4): 837-845, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32438937

RESUMO

Tomography using a focused ion beam (FIB) combined with a scanning electron microscope (SEM) is well-established for a wide range of conducting materials. However, performing FIB­SEM tomography on ion- and electron-beam-sensitive materials as well as poorly conducting soft materials remains challenging. Some common challenges include cross-sectioning artifacts, shadowing effects, and charging. Fully dense materials provide a planar cross section, whereas pores also expose subsurface areas of the planar cross-section surface. The image intensity of the subsurface areas gives rise to overlap between the grayscale intensity levels of the solid and pore areas, which complicates image processing and segmentation for three-dimensional (3D) reconstruction. To avoid the introduction of artifacts, the goal is to examine porous and poorly conducting soft materials as close as possible to their original state. This work presents a protocol for the optimization of FIB­SEM tomography parameters for porous and poorly conducting soft materials. The protocol reduces cross-sectioning artifacts, charging, and eliminates shadowing effects. In addition, it handles the subsurface and grayscale intensity overlap problems in image segmentation. The protocol was evaluated on porous polymer films which have both poor conductivity and pores. 3D reconstructions, with automated data segmentation, from three films with different porosities were successfully obtained.

11.
Nano Lett ; 19(11): 8171-8181, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31639311

RESUMO

Polaritons are compositional light-matter quasiparticles that have enabled remarkable breakthroughs in quantum and nonlinear optics, as well as in material science. Recently, plasmon-exciton polaritons (plexcitons) have been realized in hybrid material systems composed of transition metal dichalcogenide (TMDC) materials and metal nanoparticles, expanding polaritonic concepts to room temperature and nanoscale systems that also benefit from the exotic properties of TMDC materials. Despite the enormous progress in understanding TMDC-based plexcitons using optical-based methods, experimental evidence of plexcitons formation has remained indirect and mapping their nanometer-scale characteristics has remained an open challenge. Here, we demonstrate that plexcitons generated by a hybrid system composed of an individual silver nanoparticle and a few-layer WS2 flake can be spectroscopically mapped with nanometer spatial resolution using electron energy loss spectroscopy in a scanning transmission electron microscope. Experimental anticrossing measurements using the absorption-dominated extinction signal provide the ultimate evidence for plexciton hybridization in the strong coupling regime. Spatially resolved EELS maps reveal the existence of unexpected nanoscale variations in the deep-subwavelength nature of plexcitons generated by this system. These findings pioneer new possibilities for in-depth studies of the local atomic structure dependence of polariton-related phenomena in TMDC hybrid material systems with nanometer spatial resolution.

12.
J Microsc ; 275(3): 149-158, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31268556

RESUMO

Colloidal systems are of importance not only for everyday products, but also for the development of new advanced materials. In many applications, it is crucial to understand and control colloidal interaction. In this paper, we study colloidal particle aggregation of silica nanoparticles, where the data are given in a three-dimensional micrograph obtained by high-angle annular dark field scanning transmission electron microscopy tomography. We investigate whether dynamic models for particle aggregation, namely the diffusion limited cluster aggregation and the reaction limited cluster aggregation models, can be used to construct structures present in the scanning transmission electron microscopy data. We compare the experimentally obtained silica aggregate to the simulated postaggregated structures obtained by the dynamic models. In addition, we fit static Gibbs point process models, which are commonly used models for point patterns with interactions, to the silica data. We were able to simulate structures similar to the silica structures by using Gibbs point process models. By fitting Gibbs models to the simulated cluster aggregation patterns, we saw that a smaller probability of aggregation would be needed to construct structures similar to the observed silica particle structure.

13.
Nano Lett ; 18(9): 5938-5945, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30081635

RESUMO

Monolayer transition-metal dichalcogenides (TMDCs) have attracted a lot of research attention recently, motivated by their remarkable optical properties and potential for strong light-matter interactions. Realization of strong plasmon-exciton coupling is especially desirable in this context because it holds promise for the enabling of room-temperature quantum and nonlinear optical applications. These efforts naturally require investigations at a single-nanoantenna level, which, in turn, should possess a compact optical mode interacting with a small amount of excitonic material. However, standard plasmonic nanoantenna designs such as nanoparticle dimers or particle-on-film suffer from misalignment of the local electric field in the gap with the in-plane transition dipole moment of monolayer TMDCs. Here, we circumvent this problem by utilizing gold bi-pyramids (BPs) as very efficient plasmonic nanoantennas. We demonstrate strong coupling between individual BPs and tungsten diselenide (WSe2) monolayers at room temperature. We further study the coupling between multilayers of WSe2 and BPs to elucidate the effect of the number of layers on the coupling strength. Importantly, BPs adopt a reduced-symmetry configuration when deposited on WSe2, such that only one sharp antenna tip efficiently interacts with excitons. Despite the small interaction area, we manage to achieve strong coupling, with Rabi splitting exceeding ∼100 meV. Our results suggest a feasible way toward realizing plasmon-exciton polaritons involving nanoscopic areas of TMDCs, thus pointing toward quantum and nonlinear optics applications at ambient conditions.

14.
Nano Lett ; 18(8): 4949-4956, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30044917

RESUMO

Free-standing semiconductor nanowires constitute an ideal material system for the direct manipulation of electrical and optical properties by strain engineering. In this study, we present a direct quantitative correlation between electrical conductivity and nanoscale lattice strain of individual InAs nanowires passivated with a thin epitaxial In0.6Ga0.4As shell. With an in situ electron microscopy electromechanical testing technique, we show that the piezoresistive response of the nanowires is greatly enhanced compared to bulk InAs, and that uniaxial elastic strain leads to increased conductivity, which can be explained by a strain-induced reduction in the band gap. In addition, we observe inhomogeneity in strain distribution, which could have a reverse effect on the conductivity by increasing the scattering of charge carriers. These results provide a direct correlation of nanoscale mechanical strain and electrical transport properties in free-standing nanostructures.

17.
J Int Relat Dev (Ljubl) ; 21(2): 275-299, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-32288634

RESUMO

This article seeks to bridge the gap between the literature on international organisations (IO) and the field of crisis management (CM) by focusing on two themes: how crisis conditions lead organisations to centralise decision-making and how this subsequently affects an international organisation's autonomy. We do this based on two dimensions inspired by the CM literature, that is, the degree of the perceived time pressure and the precrisis legal institutional framework. The plausibility of the analytical framework is assessed on the basis of three cases: the WHO's dealing with the SARS crisis; the European Commission's dealing with the Mad Cow Disease crisis; and the UN's handling of the humanitarian crisis in the Great Lakes region. The results show that the perceived time pressure affected IO autonomy in so far as higher time pressure that rendered IO autonomy stronger, whereas with regard to the institutional framework no stringent pattern could be seen. Moreover, based on our findings, we propose that IO autonomy in crisis situations also depends on the framing of an issue in terms on impartiality, on the extent to which the IO in question is subject to politicisation, as well as on the degree to which it possesses specific technical expertise.

18.
Sensors (Basel) ; 17(6)2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28632153

RESUMO

Plasmonic nanostructures are widely used for various sensing applications by monitoring changes in refractive index through optical spectroscopy or as substrates for surface enhanced Raman spectroscopy. However, in most practical situations conventional surface plasmon resonance is preferred for biomolecular interaction analysis because of its high resolution in surface coverage and the simple single-material planar interface. Still, plasmonic nanostructures may find unique sensing applications, for instance when the nanoscale geometry itself is of interest. This calls for new methods to prepare nanoscale particles and cavities with controllable dimensions and curvature. In this work, we present two types of plasmonic nanopores where the solid support underneath a nanohole array has been etched, thereby creating cavities denoted as 'nanowells' or 'nanocaves' depending on the degree of anisotropy (dry or wet etch). The refractometric sensitivity is shown to be enhanced upon removing the solid support because of an increased probing volume and a shift of the asymmetric plasmonic field towards the liquid side of the finite gold film. Furthermore, the structures exhibit different spectral changes upon binding inside the cavities compared to the gold surface, which means that the structures can be used for location-specific detection. Other sensing applications are also suggested.

19.
Nanotechnology ; 27(36): 365603, 2016 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27479073

RESUMO

Semiconducting nanowires grown by quasi-van-der-Waals epitaxy on graphite flakes are a new class of hybrid materials that hold promise for scalable nanostructured devices within opto-electronics. Here we report on high aspect ratio and stacking fault free Ag-seeded InAs nanowires grown on exfoliated graphite flakes by molecular beam epitaxy. Ag catalyzes the InAs nanowire growth selectively on the graphite flakes and not on the underlying InAs substrates. This allows for easy transfer of the flexible graphite flakes with as-grown nanowire ensembles to arbitrary substrates by a micro-needle manipulator. Besides the possibilities for fabricating novel nanostructure device designs, we show how this method is used to study the parasitic growth and bicrystal match between the graphite flake and the nanowires by transmission electron microscopy.

20.
J Microsc ; 260(2): 125-32, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26139081

RESUMO

The specimen preparation method is crucial for how much information can be gained from transmission electron microscopy (TEM) studies of supported nanoparticle catalysts. The aim of this work is to develop a method that allows for observation of size and location of nanoparticles deposited on a porous oxide support material. A bimetallic Pt-Pd/Al(2)O(3) catalyst in powder form was embedded in acrylic resin and lift-out specimens were extracted using combined focused ion beam/scanning electron microscopy (FIB/SEM). These specimens allow for a cross-section view across individual oxide support particles, including the unaltered near surface region of these particles. A site-dependent size distribution of Pt-Pd nanoparticles was revealed along the radial direction of the support particles by scanning transmission electron microscopy (STEM) imaging. The developed specimen preparation method enables obtaining information about the spatial distribution of nanoparticles in complex support structures which commonly is a challenge in heterogeneous catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA