Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Genes Dev ; 30(2): 164-76, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26773002

RESUMO

The DELLA family of transcription regulators functions as master growth repressors in plants by inhibiting phytohormone gibberellin (GA) signaling in response to developmental and environmental cues. DELLAs also play a central role in mediating cross-talk between GA and other signaling pathways via antagonistic direct interactions with key transcription factors. However, how these crucial protein-protein interactions can be dynamically regulated during plant development remains unclear. Here, we show that DELLAs are modified by the O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) SECRET AGENT (SEC) in Arabidopsis. O-GlcNAcylation of the DELLA protein REPRESSOR OF ga1-3 (RGA) inhibits RGA binding to four of its interactors-PHYTOCHROME-INTERACTING FACTOR3 (PIF3), PIF4, JASMONATE-ZIM DOMAIN1, and BRASSINAZOLE-RESISTANT1 (BZR1)-that are key regulators in light, jasmonate, and brassinosteroid signaling pathways, respectively. Consistent with this, the sec-null mutant displayed reduced responses to GA and brassinosteroid and showed decreased expression of several common target genes of DELLAs, BZR1, and PIFs. Our results reveal a direct role of OGT in repressing DELLA activity and indicate that O-GlcNAcylation of DELLAs provides a fine-tuning mechanism in coordinating multiple signaling activities during plant development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas/genética , N-Acetilglucosaminiltransferases/metabolismo , Transdução de Sinais/fisiologia , Acilação , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Giberelinas/metabolismo , Mutação , N-Acetilglucosaminiltransferases/genética , Ligação Proteica
2.
Appl Environ Microbiol ; 88(23): e0124122, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36374093

RESUMO

Plant growth-promoting (PGP) bacteria are important to the development of sustainable agricultural systems. PGP microbes that fix atmospheric nitrogen (diazotrophs) could minimize the application of industrially derived fertilizers and function as a biofertilizer. The bacterium Gluconacetobacter diazotrophicus is a nitrogen-fixing PGP microbe originally discovered in association with sugarcane plants, where it functions as an endophyte. It also forms endophyte associations with a range of other agriculturally relevant crop plants. G. diazotrophicus requires microaerobic conditions for diazotrophic growth. We generated a transposon library for G. diazotrophicus and cultured the library under various growth conditions and culture medium compositions to measure fitness defects associated with individual transposon inserts (transposon insertion sequencing [Tn-seq]). Using this library, we probed more than 3,200 genes and ascertained the importance of various genes for diazotrophic growth of this microaerobic endophyte. We also identified a set of essential genes. IMPORTANCE Our results demonstrate a succinct set of genes involved in diazotrophic growth for G. diazotrophicus, with a lower degree of redundancy than what is found in other model diazotrophs. The results will serve as a valuable resource for those interested in biological nitrogen fixation and will establish a baseline data set for plant free growth, which could complement future studies related to the endophyte relationship.


Assuntos
Gluconacetobacter , Simbiose , Gluconacetobacter/genética , Fixação de Nitrogênio/genética , Nitrogênio
3.
Arch Virol ; 167(2): 631-634, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35028739

RESUMO

The complete genome sequences of two isolates of spiraea yellow leafspot virus (SYLSV) were determined. Spiraea (Spiraea x bumalda) 'Anthony Waterer' plants showing virus-like symptoms including yellow spotting and leaf deformation were used for sequencing. The viral genome of SYLSV-MN (Minnesota) and SYLSV-MD (Maryland) is 8,017bp in length. The sequences share 95% identity at the nucleotide level. Both isolates have the same genome organization containing three open reading frames (ORFs), with ORF3 being the largest, encoding a putative polyprotein of 232 kDa with conserved domains including a zinc finger, pepsin-like aspartate protease, reverse transcriptase (RT), and RNase H. Pairwise comparisons between members of the genus Badnavirus showed that gooseberry vein banding associated virus GB1 (HQ852248) and rubus yellow net virus isolate Baumforth's Seedling A (KM078034) were the closest related virus sequences to SYLSV, sharing 73% identity at the nucleotide level. Bacilliform virions with dimensions of 150 nm × 30 nm were observed in virus preparations from symptomatic, but not asymptomatic, plants.


Assuntos
Badnavirus , Spiraea , Badnavirus/genética , Genoma Viral , Fases de Leitura Aberta , Filogenia , Doenças das Plantas
4.
J Gen Virol ; 101(10): 1025-1026, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32940596

RESUMO

Caulimoviridae is a family of non-enveloped reverse-transcribing plant viruses with non-covalently closed circular dsDNA genomes of 7.1-9.8 kbp in the order Ortervirales. They infect a wide range of monocots and dicots. Some viruses cause economically important diseases of tropical and subtropical crops. Transmission occurs through insect vectors (aphids, mealybugs, leafhoppers, lace bugs) and grafting. Activation of infectious endogenous viral elements occurs in Musa balbisiana, Petunia hybrida and Nicotiana edwardsonii. However, most endogenous caulimovirids are not infectious. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Caulimoviridae, which is available at ictv.global/report/caulimoviridae.


Assuntos
Caulimoviridae , Caulimoviridae/classificação , Caulimoviridae/fisiologia , Caulimoviridae/ultraestrutura , Genoma Viral , Plantas/virologia , Replicação Viral
5.
Plant Cell ; 29(12): 3186-3197, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29150547

RESUMO

Plants employ stomatal closure and reduced growth to avoid water deficiency damage. Reduced levels of the growth-promoting hormone gibberellin (GA) lead to increased tolerance to water deficit, but the underlying mechanism is unknown. Here, we show that the tomato (Solanum lycopersicum) DELLA protein PROCERA (PRO), a negative regulator of GA signaling, acts in guard cells to promote stomatal closure and reduce water loss in response to water deficiency by increasing abscisic acid (ABA) sensitivity. The loss-of-function pro mutant exhibited increased stomatal conductance and rapid wilting under water deficit stress. Transgenic tomato overexpressing constitutively active stable DELLA proteins (S-della) displayed the opposite phenotype. The effects of S-della on stomatal aperture and water loss were strongly suppressed in the ABA-deficient mutant sitiens, indicating that these effects of S-della are ABA dependent. While DELLA had no effect on ABA levels, guard cell ABA responsiveness was increased in S-della and reduced in pro plants compared with the wild type. Expressing S-della under the control of a guard-cell-specific promoter was sufficient to increase stomatal sensitivity to ABA and to reduce water loss under water deficit stress but had no effect on leaf size. This result indicates that DELLA promotes stomatal closure independently of its effect on growth.


Assuntos
Proteínas de Plantas/metabolismo , Estômatos de Plantas/citologia , Estômatos de Plantas/fisiologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiologia , Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Solanum lycopersicum/genética , Modelos Biológicos , Mutação/genética , Transpiração Vegetal/fisiologia , Plantas Geneticamente Modificadas , Estresse Fisiológico , Água
6.
Plant Biotechnol J ; 17(1): 132-140, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29797460

RESUMO

The tomato PROCERA gene encodes a DELLA protein, and loss-of-function mutations derepress growth. We used CRISPR/Cas9 and a single guide RNAs (sgRNA) to target mutations to the PROCERA DELLA domain, and recovered several loss-of-function mutations and a dominant dwarf mutation that carries a deletion of one amino acid in the DELLA domain. This is the first report of a dominant dwarf PROCERA allele. This allele retains partial responsiveness to exogenously applied gibberellin. Heterozygotes show an intermediate phenotype at the seedling stage, but adult heterozygotes are as dwarfed as homozygotes.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Edição de Genes , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Solanum lycopersicum/genética , Alelos , Edição de Genes/métodos , Genes de Plantas , Heterozigoto , Homozigoto , Solanum lycopersicum/crescimento & desenvolvimento , Peptídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Nat Chem Biol ; 13(5): 479-485, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28244988

RESUMO

Plant development requires coordination among complex signaling networks to enhance the plant's adaptation to changing environments. DELLAs, transcription regulators originally identified as repressors of phytohormone gibberellin signaling, play a central role in integrating multiple signaling activities via direct protein interactions with key transcription factors. Here, we found that DELLA is mono-O-fucosylated by the novel O-fucosyltransferase SPINDLY (SPY) in Arabidopsis thaliana. O-fucosylation activates DELLA by promoting its interaction with key regulators in brassinosteroid- and light-signaling pathways, including BRASSINAZOLE-RESISTANT1 (BZR1), PHYTOCHROME-INTERACTING-FACTOR3 (PIF3) and PIF4. Moreover, spy mutants displayed elevated responses to gibberellin and brassinosteroid, and increased expression of common target genes of DELLAs, BZR1 and PIFs. Our study revealed that SPY-dependent protein O-fucosylation plays a key role in regulating plant development. This finding may have broader importance because SPY orthologs are conserved in prokaryotes and eukaryotes, thus suggesting that intracellular O-fucosylation may regulate a wide range of biological processes in diverse organisms.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fucosiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fucosiltransferases/genética , Proteínas Repressoras/genética
8.
Plant Physiol ; 173(2): 1453-1462, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27999086

RESUMO

The plant hormone indole-3-acetic acid (IAA or auxin) mediates the elongation growth of shoot tissues by promoting cell expansion. According to the acid growth theory proposed in the 1970s, auxin activates plasma membrane H+-ATPases (PM H+-ATPases) to facilitate cell expansion by both loosening the cell wall through acidification and promoting solute uptake. Mechanistically, however, this process is poorly understood. Recent findings in Arabidopsis (Arabidopsis thaliana) have demonstrated that auxin-induced SMALL AUXIN UP RNA (SAUR) genes promote elongation growth and play a key role in PM H+-ATPase activation by inhibiting PP2C.D family protein phosphatases. Here, we extend these findings by demonstrating that SAUR proteins also inhibit tomato PP2C.D family phosphatases and that AtSAUR19 overexpression in tomato (Solanum lycopersicum) confers the same suite of phenotypes as previously reported for Arabidopsis. Furthermore, we employ a custom image-based method for measuring hypocotyl segment elongation with high resolution and a method for measuring cell wall mechanical properties, to add mechanistic details to the emerging description of auxin-mediated cell expansion. We find that constitutive expression of GFP-AtSAUR19 bypasses the normal requirement of auxin for elongation growth by increasing the mechanical extensibility of excised hypocotyl segments. In contrast, hypocotyl segments overexpressing a PP2C.D phosphatase are specifically impaired in auxin-mediated elongation. The time courses of auxin-induced SAUR expression and auxin-dependent elongation growth were closely correlated. These findings indicate that induction of SAUR expression is sufficient to elicit auxin-mediated expansion growth by activating PM H+-ATPases to facilitate apoplast acidification and mechanical wall loosening.


Assuntos
Proteínas de Arabidopsis/genética , Hipocótilo/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Solanum lycopersicum/genética , Plantas Geneticamente Modificadas , Proteína Fosfatase 2C/genética , Proteína Fosfatase 2C/metabolismo , ATPases Translocadoras de Prótons/metabolismo
9.
Plant Cell ; 27(6): 1579-94, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26036254

RESUMO

Gibberellin (GA) regulates plant development primarily by triggering the degradation/deactivation of the DELLA proteins. However, it remains unclear whether all GA responses are regulated by DELLAs. Tomato (Solanum lycopersicum) has a single DELLA gene named PROCERA (PRO), and its recessive pro allele exhibits constitutive GA activity but retains responsiveness to external GA. In the loss-of-function mutant pro(ΔGRAS), all examined GA developmental responses were considerably enhanced relative to pro and a defect in seed desiccation tolerance was uncovered. As pro, but not pro(ΔGRAS), elongation was promoted by GA treatment, pro may retain residual DELLA activity. In agreement with homeostatic feedback regulation of the GA biosynthetic pathway, we found that GA20oxidase1 expression was suppressed in pro(ΔGRAS) and was not affected by exogenous GA3. In contrast, expression of GA2oxidase4 was not affected by the elevated GA signaling in pro(ΔGRAS) but was strongly induced by exogenous GA3. Since a similar response was found in Arabidopsis thaliana plants with impaired activity of all five DELLA genes, we suggest that homeostatic GA responses are regulated by both DELLA-dependent and -independent pathways. Transcriptome analysis of GA-treated pro(ΔGRAS) leaves suggests that 5% of all GA-regulated genes in tomato are DELLA independent.


Assuntos
Giberelinas/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/fisiologia , Solanum lycopersicum/fisiologia , Ácido Abscísico/fisiologia , Retroalimentação Fisiológica , Genes de Plantas/fisiologia , Solanum lycopersicum/genética , Mutação , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Transcriptoma
10.
J Bacteriol ; 197(2): 354-61, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25384478

RESUMO

The posttranslational addition of a single O-linked ß-N-acetylglucosamine (O-GlcNAc) to serine or threonine residues regulates numerous metazoan cellular processes. The enzyme responsible for this modification, O-GlcNAc transferase (OGT), is conserved among a wide variety of organisms and is critical for the viability of many eukaryotes. Although OGTs with domain structures similar to those of eukaryotic OGTs are predicted for many bacterial species, the cellular roles of these OGTs are unknown. We have identified a putative OGT in the cyanobacterium Synechococcus elongatus PCC 7942 that shows active-site homology and similar domain structure to eukaryotic OGTs. An OGT deletion mutant was created and found to exhibit several phenotypes. Without agitation, mutant cells aggregate and settle out of the medium. The mutant cells have higher free inorganic phosphate levels, wider thylakoid lumen, and differential accumulation of electron-dense inclusion bodies. These phenotypes are rescued by reintroduction of the wild-type OGT but are not fully rescued by OGTs with single amino acid substitutions corresponding to mutations that reduce eukaryotic OGT activity. S. elongatus OGT purified from Escherichia coli hydrolyzed the sugar donor, UDP-GlcNAc, while the mutant OGTs that did not fully rescue the deletion mutant phenotypes had reduced or no activity. These results suggest that bacterial eukaryote-like OGTs, like their eukaryotic counterparts, influence multiple processes.


Assuntos
N-Acetilglucosaminiltransferases/metabolismo , Synechococcus/enzimologia , Synechococcus/metabolismo , N-Acetilglucosaminiltransferases/genética , Synechococcus/genética
11.
Plant Cell ; 24(1): 96-108, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22267487

RESUMO

O-linked N-acetylglucosamine (O-GlcNAc) modifications regulate the posttranslational fate of target proteins. The Arabidopsis thaliana O-GlcNAc transferase (OGT) SPINDLY (SPY) suppresses gibberellin signaling and promotes cytokinin (CK) responses by unknown mechanisms. Here, we present evidence that two closely related class I TCP transcription factors, TCP14 and TCP15, act with SPY to promote CK responses. TCP14 and TCP15 interacted with SPY in yeast two-hybrid and in vitro pull-down assays and were O-GlcNAc modified in Escherichia coli by the Arabidopsis OGT, SECRET AGENT. Overexpression of TCP14 severely affected plant development in a SPY-dependent manner and stimulated typical CK morphological responses, as well as the expression of the CK-regulated gene RESPONSE REGULATOR5. TCP14 also promoted the transcriptional activity of the CK-induced mitotic factor CYCLIN B1;2. Whereas TCP14-overexpressing plants were hypersensitive to CK, spy and tcp14 tcp15 double mutant leaves and flowers were hyposensitive to the hormone. Reducing CK levels by overexpressing CK OXIDASE/DEHYDROGENASE3 suppressed the TCP14 overexpression phenotypes, and this suppression was reversed when the plants were treated with exogenous CK. Taken together, we suggest that responses of leaves and flowers to CK are mediated by SPY-dependent TCP14 and TCP15 activities.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Flores/metabolismo , Folhas de Planta/metabolismo , Proteínas Repressoras/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Folhas de Planta/genética , Ligação Proteica , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Plant Physiol ; 161(1): 455-64, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23144189

RESUMO

Many plant proteins are modified with N-linked oligosaccharides at asparagine-X-serine/threonine sites during transit through the endoplasmic reticulum and the Golgi. We have identified a number of Arabidopsis (Arabidopsis thaliana) proteins with modifications consisting of an N-linked N-acetyl-D-glucosamine monosaccharide (N-GlcNAc). Electron transfer dissociation mass spectrometry analysis of peptides bearing this modification mapped the modification to asparagine-X-serine/threonine sites on proteins that are predicted to transit through the endoplasmic reticulum and Golgi. A mass labeling method was developed and used to study N-GlcNAc modification of two thioglucoside glucohydrolases (myrosinases), TGG1 and TGG2 (for thioglucoside glucohydrolase). These myrosinases are also modified with high-mannose (Man)-type glycans. We found that N-GlcNAc and high-Man-type glycans can occur at the same site. It has been hypothesized that N-GlcNAc modifications are generated when endo-ß-N-acetylglucosaminidase (ENGase) cleaves N-linked glycans. We examined the effects of mutations affecting the two known Arabidopsis ENGases on N-GlcNAc modification of myrosinase and found that modification of TGG2 was greatly reduced in one of the single mutants and absent in the double mutant. Surprisingly, N-GlcNAc modification of TGG1 was not affected in any of the mutants. These data support the hypothesis that ENGases hydrolyze high-Man glycans to produce some of the N-GlcNAc modifications but also suggest that some N-GlcNAc modifications are generated by another mechanism. Since N-GlcNAc modification was detected at only one site on each myrosinase, the production of the N-GlcNAc modification may be regulated.


Assuntos
Acetilglucosamina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glicosídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Asparagina/metabolismo , Cromatografia de Afinidade/métodos , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Glicosídeo Hidrolases/genética , Glicosilação , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/metabolismo , Conformação Molecular , Polissacarídeos/metabolismo , Dobramento de Proteína , Proteínas Recombinantes/metabolismo , Serina/metabolismo , Treonina/metabolismo
15.
Microbiol Spectr ; 12(1): e0247823, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38038458

RESUMO

IMPORTANCE: Our results demonstrate increased extracellular ammonium release in the endophyte plant growth-promoting bacterium Gluconacetobacter diazotrophicus. Strains were constructed in a manner that leaves no antibiotic markers behind, such that these strains contain no transgenes. Levels of ammonium achieved by cultures of modified G. diazotrophicus strains reached concentrations of approximately 18 mM ammonium, while wild-type G. diazotrophicus remained much lower (below 50 µM). These findings demonstrate a strong potential for further improving the biofertilizer potential of this important microbe.


Assuntos
Endófitos , Gluconacetobacter , Endófitos/genética , Edição de Genes , Gluconacetobacter/genética
16.
Front Plant Sci ; 15: 1343066, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091319

RESUMO

The Arabidopsis thaliana glycosyl transferases SPINDLY (SPY) and SECRET AGENT (SEC) modify nuclear and cytosolic proteins with O-linked fucose or O-linked N-acetylglucosamine (O-GlcNAc), respectively. O-fucose and O-GlcNAc modifications can occur at the same sites. SPY interacts physically and genetically with GIGANTEA (GI), suggesting that it could be modified by both enzymes. Previously, we found that, when co-expressed in Escherichia coli, SEC modifies GI; however, the modification site was not determined. By analyzing the overlapping sub-fragments of GI, we identified a region that was modified by SEC in E. coli. Modification was undetectable when threonine 829 (T829) was mutated to alanine, while the T834A and T837A mutations reduced the modification, suggesting that T829 was the primary or the only modification site. Mapping using mass spectrometry detected only the modification of T829. Previous studies have shown that the positions modified by SEC in E. coli are modified in planta, suggesting that T829 is O-GlcNAc modified in planta.

17.
Microbiologyopen ; 13(4): e1425, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38987999

RESUMO

Pigments provide a simple means to rapidly visually ascertain the quantities or presence of specific microbes in a complex community. The selection of pigment-producing colonies that are simple to differentiate from common colony phenotypes provides a high degree of certainty for the identity of pigment-tagged strains. Successful employment of pigment production is dependent on various intrinsic factors related to proper levels of gene expression and pigment production that are not always easy to predict and vary within each microbe. We have constructed a simple transposon system that incorporates the genes for the production of deoxyviolacein, a pigment produced from intracellular reserves of the amino acid tryptophan, to randomly insert these genes throughout the genome. This tool allows the user to select from many thousands of potential sites throughout a bacterial genome for an ideal location to generate the desired amount of pigment. We have applied this system to a small selection of endophytes and other model bacteria to differentiate these strains from complex communities and confirm their presence after several weeks in natural environments. We provide two examples of applications using the pigments to trace strains following introduction into plant tissues or to produce a reporter strain for extracellular nitrogen compound sensing. We recognize that this tool could have far broader utility in other applications and microbes, and describe the methodology for use by the greater scientific community.


Assuntos
Elementos de DNA Transponíveis , Pigmentos Biológicos , Elementos de DNA Transponíveis/genética , Pigmentos Biológicos/metabolismo , Mutagênese Insercional/métodos , Vetores Genéticos/genética , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Triptofano/metabolismo , Endófitos/genética , Endófitos/metabolismo
18.
Arch Virol ; 158(4): 877-80, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23178971

RESUMO

This report describes the complete nucleotide sequence and genome organization of rose yellow vein virus (RYVV), a proposed new member of the family Caulimoviridae. The RYVV genome is 9314 bp in size and contains eight open reading frames (ORFs). ORFs 1, 2, and 3 have 22-38 % amino acid sequence similarity to known members of the family Caulimoviridae. The remaining ORFs have no significant amino acid sequence similarity to known viruses. Based on differences in its genome organization, its low sequence similarity to known members of the family Caulimoviridae, and the results of phylogenetic analysis, RYVV appears to be a distinct new member of this family.


Assuntos
Caulimoviridae/genética , Genoma Viral , Sequência de Bases , Caulimoviridae/classificação , Clonagem Molecular , Regulação Viral da Expressão Gênica/fisiologia , Dados de Sequência Molecular , Filogenia , Rosa , Proteínas Virais/genética , Proteínas Virais/metabolismo
19.
Biochim Biophys Acta ; 1800(2): 49-56, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19961900

RESUMO

The role in plants of posttranslational modification of proteins with O-linked N-acetylglucosamine and the evolution and function of O-GlcNAc transferases responsible for this modification are reviewed. Phylogenetic analysis of eukaryotic O-GlcNAc transferases (OGTs) leads us to propose that plants have two distinct OGTs, SEC- and SPY-like, that originated in prokaryotes. Animals and some fungi have a SEC-like enzyme while plants have both. Green algae and some members of the Apicomplexa and amoebozoa have the SPY-like enzyme. Interestingly the progenitor of the Apicomplexa lineage likely had a photosynthetic plastid that persists in a degenerated form in some species, raising the possibility that plant SPY-like OGTs are derived from a photosynthetic endosymbiont. OGTs have multiple tetratricopeptide repeats (TPRs) that within the SEC- and SPY-like classes exhibit evidence of strong selective pressure on specific repeats, suggesting that the function of these repeats is conserved. SPY-like and SEC-like OGTs have both unique and overlapping roles in the plant. The phenotypes of sec and spy single and double mutants indicate that O-GlcNAc modification is essential and that it affects diverse plant processes including response to hormones and environmental signals, circadian rhythms, development, intercellular transport and virus infection. The mechanistic details of how O-GlcNAc modification affects these processes are largely unknown. A major impediment to understanding this is the lack of knowledge of the identities of the modified proteins.


Assuntos
Acetilglucosamina/metabolismo , Evolução Molecular , N-Acetilglucosaminiltransferases/metabolismo , Plantas/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/fisiologia , N-Acetilglucosaminiltransferases/fisiologia , Filogenia , Plantas/genética , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Sequências Repetitivas de Aminoácidos/genética , Proteínas Repressoras/fisiologia , Alinhamento de Sequência
20.
Amino Acids ; 40(3): 869-76, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20676902

RESUMO

The capsid protein of Plum pox virus (PPV-CP) is modified with O-linked ß-N-acetylglucosamine (O-GlcNAc). In Arabidopsis thaliana this modification is made by an O-GlcNAc transferase named SECRET AGENT (SEC). Modification of PPV-CP by SEC is hypothesized to have a direct role in the infection process, because virus titer and rate of spread are reduced in SEC mutants. Previous studies used deletion mapping and site-directed mutagenesis to identify four O-GlcNAc sites on the capsid protein that are modified by Escherichia coli-expressed SEC. The infection process was not affected when two of these sites were mutated suggesting that O-GlcNAcylation of these sites does not have a significant role in the infection process or that a subset of the modifications is sufficient. Since it is possible that the mutational mapping approach missed or incorrectly identified O-GlcNAc sites, the modifications produced by E. coli-expressed SEC were characterized using mass spectrometry. O-GlcNAcylated peptides were enzymatically tagged with galactose, the products were enriched on immobilized Ricinus communis agglutinin I and sequenced by electron transfer dissociation (ETD) mass spectrometry. Five O-GlcNAc sites on PPV-CP were identified. Two of these sites were not identified in by the previous mutational mapping. In addition, one site previously predicted by mutation mapping was not detected, but modification of this site was not supported when the mutation mapping was repeated. This study suggests that mapping modification sites by ETD mass spectrometry is more comprehensive and accurate than mutational mapping.


Assuntos
Acetilglucosamina/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Vírus Eruptivo da Ameixa/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Biocatálise , Proteínas do Capsídeo/genética , Glicosilação , Espectrometria de Massas , Dados de Sequência Molecular , N-Acetilglucosaminiltransferases/genética , Mapeamento de Peptídeos , Vírus Eruptivo da Ameixa/química , Vírus Eruptivo da Ameixa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA