Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R484-R494, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34287075

RESUMO

Calculating the blood pressure (BP) response to a burst of muscle sympathetic nerve activity (MSNA), termed sympathetic transduction, may be influenced by an individual's resting burst frequency. We examined the relationships between sympathetic transduction and MSNA in 107 healthy males and females and developed a normalized sympathetic transduction metric to incorporate resting MSNA. Burst-triggered signal averaging was used to calculate the peak diastolic BP response following each MSNA burst (sympathetic transduction of BP) and following incorporation of MSNA burst cluster patterns and amplitudes (sympathetic transduction slope). MSNA burst frequency was negatively correlated with sympathetic transduction of BP (r = -0.42; P < 0.01) and the sympathetic transduction slope (r = -0.66; P < 0.01), independent of sex. MSNA burst amplitude was unrelated to sympathetic transduction of BP in males (r = 0.04; P = 0.78), but positively correlated in females (r = 0.44; P < 0.01) and with the sympathetic transduction slope in all participants (r = 0.42; P < 0.01). To control for MSNA, the linear regression slope of the log-log relationship between sympathetic transduction and MSNA burst frequency was used as a correction exponent. In subanalysis of males (38 ± 10 vs. 14 ± 4 bursts/min) and females (28 ± 5 vs. 12 ± 4 bursts/min) with high versus low MSNA, sympathetic transduction of BP and sympathetic transduction slope were lower in participants with high MSNA (all P < 0.05). In contrast, normalized sympathetic transduction of BP and normalized sympathetic transduction slope were similar in males and females with high versus low MSNA (all P > 0.22). We propose that incorporating MSNA burst frequency into the calculation of sympathetic transduction will allow comparisons between participants with varying levels of resting MSNA.


Assuntos
Potenciais de Ação , Pressão Sanguínea , Sistema Cardiovascular/inervação , Eletromiografia , Músculo Esquelético/inervação , Processamento de Sinais Assistido por Computador , Sistema Nervoso Simpático/fisiologia , Adolescente , Adulto , Determinação da Pressão Arterial , Eletrocardiografia , Feminino , Voluntários Saudáveis , Frequência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade , Estudo de Prova de Conceito , Estudos Retrospectivos , Fatores de Tempo , Adulto Jovem
3.
Med Sci Sports Exerc ; 53(9): 1958-1968, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33756524

RESUMO

PURPOSE: Males have larger blood pressure (BP) responses to relative-intensity static handgrip exercise compared with females. Controlling for absolute load (maximal voluntary contraction (MVC)) abolishes these differences. Whether similar observations exist during large muscle mass exercise or dynamic contractions, and the mechanisms involved, remains unknown. METHODS: BP, heart rate, muscle oxygenation (near-infrared spectroscopy), and rectus femoris EMG were recorded in 28 males and 17 females during 10% and 30% MVC static (120 s) and isokinetic dynamic (180 s; 1:2 work-to-rest ratio; angular velocity, 60°·s-1) knee extensor exercise. Static and dynamic exercises were completed on separate visits, in a randomized order. Sex differences were examined with and without statistical adjustment of MVC (ANCOVA). RESULTS: Males had larger systolic BP responses (interaction, P < 0.0001) and muscle deoxygenation (interaction, P < 0.01) than did females during 10% static exercise, with no difference in EMG (interaction, P = 0.67). Peak systolic BP was correlated with MVC (r = 0.55, P = 0. 0001), and adjustment for MVC abolished sex differences in systolic BP (interaction, P = 0.3). BP, heart rate, muscle oxygenation/deoxygenation, and EMG responses were similar between sexes during 30% static exercise (interaction; all, P > 0.2), including following adjustment for MVC (all, P > 0.1). Males had larger systolic BP responses during dynamic exercise at 10% and 30% (interaction; both, P = 0.01), which were abolished after adjustment for MVC (interaction; both, P > 0.08). Systolic BP responses were correlated with absolute MVC and stroke volume responses during 10% (r = 0.31, P = 0.04; r = 0.61, P < 0.0001, respectively) and 30% (r = 0.48, P = 0.001; r = 0.59, P < 0.0001, respectively). CONCLUSIONS: Absolute contraction intensity can influence systolic BP responses to 10% but not 30% MVC static, as well as 10% and 30% MVC dynamic knee extensor exercise, and should be considered in cross-sectional comparisons of exercise BP.


Assuntos
Pressão Sanguínea/fisiologia , Exercício Físico/fisiologia , Frequência Cardíaca/fisiologia , Contração Muscular/fisiologia , Músculo Quadríceps/fisiologia , Adolescente , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Fatores Sexuais , Adulto Jovem
4.
Med Sci Sports Exerc ; 53(12): 2596-2604, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34310499

RESUMO

PURPOSE: Larger blood pressure (BP) responses to relative-intensity static exercise in men versus women are thought to involve altered muscle metaboreflex activation, but whether this is because of an intrinsic sex difference in metabolite production or differences in muscle strength and absolute load is unknown. METHODS: Continuous BP and heart rate were recorded in 200 healthy young men and women (women: n = 109) during 2 min of static handgrip exercise at 30% of maximal voluntary contraction (MVC), followed by 2 min of postexercise circulatory occlusion (PECO). Muscle sympathetic nerve activity (MSNA) was recorded in a subset of participants (n = 39; women, n = 21), permitting calculation of signal-averaged resting sympathetic transduction (MSNA-diastolic BP). Sex differences were examined with and without statistical adjustment for MVC. Multivariate regression analyses were performed to identify predictors of BP responses. RESULTS: Men had larger systolic BP responses (interactions, P < 0.0001) to static handgrip exercise (24 ± 10 vs 17 ± 9 mm Hg [mean ± SD], P < 0.0001) and PECO (20 ± 11 vs 16 ± 9 mm Hg, P < 0.0001). Adjustment for MVC abolished these sex differences in BP (interactions, P > 0.7). In the subset with MSNA, neither burst frequency or incidence responses to static handgrip exercise or PECO differed between men and women (interactions, P > 0.2). Resting sympathetic transduction was also similar (P = 0.8). Multiple linear regression analysis showed that MVC or the change in MSNA, were predictors of BP responses to static handgrip, but only MVC was associated with BP responses during PECO. CONCLUSIONS: Sex differences in absolute contraction load contribute to differences in BP responses during muscle metaboreflex isolation using PECO. These data do not support an intrinsic effect of sex as being responsible for exercise BP differences between men and women.


Assuntos
Pressão Sanguínea , Exercício Físico , Força da Mão/fisiologia , Contração Muscular/fisiologia , Sistema Nervoso Simpático/fisiologia , Adulto , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Estudos Retrospectivos , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA