Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biomaterials ; 292: 121913, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442437

RESUMO

Here, we report a CD138 receptor targeting liposomal formulation (TNP[Prodrug-4]) that achieved efficacious tumor growth inhibition in treating multiple myeloma by overcoming the dose limiting severe toxicity issues of a highly potent drug, Mertansine (DM1). Despite the promising potential to treat various cancers, due to poor solubility and pharmacokinetic profile, DM1's translation to the clinic has been unsatisfactory. We hypothesized that the optimal prodrug chemistry would promote efficient loading of the prodrug into targeted nanoparticles and achieve controlled release following endocytosis by the cancer cells, consequently, accomplish the most potent tumor growth inhibition. We evaluated four functional linker chemistries for synthesizing DM1-Prodrug molecules and evaluated their stability and cancer cell toxicity in vitro. It was determined that the phosphodiester moiety, as part of nanoparticle formulations, demonstrated most favorable characteristics with an IC50 of ∼16 nM. Nanoparticle formulations of Prodrug-4 enabled its administration at 8-fold higher dosage of equivalent free drug while remaining below maximum tolerated dose. Importantly, TNP[Prodrug-4] achieved near complete inhibition of tumor growth (∼99% by day 10) compared to control, without displaying noticeable systemic toxicity. TNP[Prodrug-4] promises a formulation that could potentially make DM1 treatment available for wider clinical applications with a long-term goal for better patient outcomes.


Assuntos
Maitansina , Mieloma Múltiplo , Nanopartículas , Pró-Fármacos , Humanos , Pró-Fármacos/química , Mieloma Múltiplo/tratamento farmacológico , Maitansina/uso terapêutico , Maitansina/farmacologia , Nanopartículas/química , Lipossomos , Peptídeos , Linhagem Celular Tumoral
2.
Nanoscale ; 14(4): 1226-1240, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-34993530

RESUMO

Endosomal escape of nanoparticles (NPs) is a weighty consideration for engineering successful nanomedicines. Although it is well-established that incorporation of histidine (His) in particle design improves endosomal escape for NPs, our understanding of its effects for ligand-targeted nanoparticles (TNPs) remains incomplete. Here, we systematically evaluated the cooperativity between targeting ligands and endosomolytic elements using liposomal TNPs with precise stoichiometric control over functional moieties (>90% loading efficiency). We synthesized endosomolytic lipid conjugates consisting of 1 to 10 consecutive His residues presented at the end of linkers between 2 to 45 repeating units of ethylene glycol (Hisn-EGm). Hisn-EGm had minimal effect on NP size (∼115 nm) and had no significant effect on the receptor specificity of TNPs (>90% inhibition by competing peptide). We evaluated various formulations with 8 different targeting ligands relevant to two disease models. Incorporation of His1-EG8 resulted in up to ∼170- and ∼12.9-fold enhancement in intracellular accumulation relative to non-endosomolytic NP and TNP, respectively. These observations were time-dependent, targeted receptor-dependent, and showed different trends for NPs and TNPs. Further evaluation demonstrated short linkers (EG2-4) significantly enhanced nanoparticle internalization compared to EG8 or longer by up to ∼2.5-fold. Finally, rationally optimized formulation, His1-EG2-TNP, improved in vitro toxicity of a DM1 prodrug to SK-BR-3 cells by ∼4.2-fold, with IC50 ∼8.5 nM compared to ∼36 nM for no-His TNP, and >100 nM for non-targeted/no-His NP. This study uncovers an intricate relationship between endosomal escape and ligand-targeted drug delivery, as well as tunable parameters. Furthermore, our findings highlight the value of rational design and systematic analysis for optimization of multifunctional NPs.


Assuntos
Nanopartículas , Pró-Fármacos , Sistemas de Liberação de Medicamentos , Endossomos , Peptídeos , Pró-Fármacos/farmacologia
3.
Nat Commun ; 13(1): 3811, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778404

RESUMO

Although IL-9 has potent anti-tumor activity in adoptive cell transfer therapy, some models suggest that it can promote tumor growth. Here, we show that IL-9 signaling is associated with poor outcomes in patients with various forms of lung cancer, and is required for lung tumor growth in multiple mouse models. CD4+ T cell-derived IL-9 promotes the expansion of both CD11c+ and CD11c- interstitial macrophage populations in lung tumor models. Mechanistically, the IL-9/macrophage axis requires arginase 1 (Arg1) to mediate tumor growth. Indeed, adoptive transfer of Arg1+ but not Arg1- lung macrophages to Il9r-/- mice promotes tumor growth. Moreover, targeting IL-9 signaling using macrophage-specific nanoparticles restricts lung tumor growth in mice. Lastly, elevated expression of IL-9R and Arg1 in tumor lesions is associated with poor prognosis in lung cancer patients. Thus, our study suggests the IL-9/macrophage/Arg1 axis is a potential therapeutic target for lung cancer therapy.


Assuntos
Interleucina-9 , Neoplasias Pulmonares , Macrófagos , Animais , Carcinogênese/metabolismo , Interleucina-9/genética , Interleucina-9/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos Alveolares/metabolismo , Camundongos
4.
J Control Release ; 322: 530-541, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276005

RESUMO

Here, we report rationally engineered peptide-targeted liposomal doxorubicin nanoparticles that have an enhanced selectivity for HER2-positive breast tumor cells with high purity, reproducibility, and precision in controlling stoichiometry of targeting peptides. To increase HER2-positive tumor cell selective drug delivery, we optimized the two most important design parameters, peptide density and linker length, via systematic evaluations of their effects on both in vitro cellular uptake and in vivo tumor accumulation and cellular uptake. The optimally designed nanoparticles were finally evaluated for their tumor inhibition efficacy using in vivo MMTV-neu transplantation mouse model. In vitro, we demonstrated that ~1% peptide density and EG8 linker were optimal parameters for targeted nanoparticle formulations to enhance HER2-positive cancer cellular uptake while preventing non-selectivity. In vivo results demonstrated that at 0.5% peptide density, enhancement of tumor cell uptake over non-targeted nanoparticles was ~2.7 fold and ~3.4 fold higher for targeted nanoparticles with EG8 and EG18 linker, respectively, while their accumulation levels at tumor tissue were similar to the non-targeted nanoparticles. These results were consistent with in vivo efficacy outcomes that ~90% tumor growth inhibition was achieved by Dox-loaded HER2 receptor targeted nanoparticles, TNPHER2pep, over control while all nanoparticle formulations minimized overall systemic toxicity relative to free Dox. This study highlights the significance of understanding and optimizing the effects of liposomal nanoparticle design parameters for enhancement of tumor selectivity to achieve improved in vivo therapeutic outcomes.


Assuntos
Neoplasias da Mama , Nanopartículas , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Camundongos , Peptídeos/uso terapêutico , Reprodutibilidade dos Testes
5.
J Hematol Oncol ; 13(1): 145, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33138841

RESUMO

BACKGROUND: Drug-loaded nanoparticles have established their benefits in the fight against multiple myeloma; however, ligand-targeted nanomedicine has yet to successfully translate to the clinic due to insufficient efficacies reported in preclinical studies. METHODS: In this study, liposomal nanoparticles targeting multiple myeloma via CD38 or CD138 receptors are prepared from pre-synthesized, purified constituents to ensure increased consistency over standard synthetic methods. These nanoparticles are then tested both in vitro for uptake to cancer cells and in vivo for accumulation at the tumor site and uptake to tumor cells. Finally, drug-loaded nanoparticles are tested for long-term efficacy in a month-long in vivo study by tracking tumor size and mouse health. RESULTS: The targeted nanoparticles are first optimized in vitro and show increased uptake and cytotoxicity over nontargeted nanoparticles, with CD138-targeting showing superior enhancement over CD38-targeted nanoparticles. However, biodistribution and tumor suppression studies established CD38-targeted nanoparticles to have significantly increased in vivo tumor accumulation, tumor cell uptake, and tumor suppression over both nontargeted and CD138-targeted nanoparticles due to the latter's poor selectivity. CONCLUSION: These results both highlight a promising cancer treatment option in CD38-targeted nanoparticles and emphasize that targeting success in vitro does not necessarily translate to success in vivo.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Lipossomos/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Sindecana-1/metabolismo , ADP-Ribosil Ciclase 1/química , Animais , Antibióticos Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Doxorrubicina/farmacocinética , Humanos , Lipossomos/química , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Simulação de Acoplamento Molecular , Mieloma Múltiplo/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Sindecana-1/química , Distribuição Tecidual
6.
Annu Rev Anal Chem (Palo Alto Calif) ; 12(1): 69-88, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-30811215

RESUMO

As our ability to synthesize and modify nanoobjects has improved, efforts to explore nanotechnology for diagnostic purposes have gained momentum. The variety of nanoobjects, especially those with polyvalent properties, displays a wide range of practical and unique properties well suited for applications in various diagnostics. This review briefly covers the broad scope of multivalent nanoobjects and their use in diagnostics, ranging from ex vivo assays and biosensors to in vivo imaging. The nanoobjects discussed here include silica nanoparticles, gold nanoparticles, quantum dots, carbon dots, fullerenes, polymers, dendrimers, liposomes, nanowires, and nanotubes. In this review, we describe recent reports of novel applications of these various nanoobjects, particularly as polyvalent entities designed for diagnostics.


Assuntos
Técnicas Biossensoriais/métodos , Nanoestruturas/análise , Nanotecnologia/métodos , Medicina de Precisão/métodos , Nanomedicina Teranóstica/métodos , Animais , Dendrímeros/análise , Fulerenos/análise , Ouro/análise , Humanos , Lipossomos/análise , Nanopartículas/análise , Nanotubos/análise , Nanofios/análise , Polímeros/análise , Pontos Quânticos/análise , Dióxido de Silício/análise
7.
J Control Release ; 311-312: 190-200, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31473250

RESUMO

Despite ligand-targeted liposomes long garnering interest as drug delivery vehicles for cancer therapeutics, inconsistency in successful outcomes have hindered their translation into the clinic. This is in part due to discrepancies between in vitro design evaluations and final in vivo outcomes. By employing a multifaceted synthetic strategy to prepare peptide-targeted nanoparticles of high purity, reproducibility, and with precisely controlled quantity of functionalities, we systematically evaluated the individual roles that peptide-linker length, peptide hydrophilicity, peptide density, and nanoparticle size play on cancer cell uptake and tumor targeting both in vitro and in vivo, and how the results correlated and contrasted. These parameters were analyzed using a VLA-4-targeted liposome system in a multiple myeloma mouse xenograft model to evaluate in vivo biodistribution and tumor cell uptake. The results showed that using in vitro models to optimize targeted-nanoparticles for maximum cellular uptake was helpful in narrowing down the particle characteristics. However, in vitro optimization fell short of achieving enhanced results in animal models, rather had negative consequences for in vivo targeting. This outcome is not surprising considering that the receptor being targeted is also present on healthy lymphocytes and increasing targeting peptide valency on particle surfaces results in an increase in non-selective, off-target binding to healthy cells. Hence, further optimization using in vivo models was absolutely necessary, through which we were able to increase the uptake of peptide-targeted liposomes by cancerous cells overexpressing VLA-4 to 15-fold over that of non-targeted liposomes in vivo. The results highlighted the importance of creating a comprehensive understanding of the effect of each liposome design parameter on multifactorial biological endpoints including both in vitro and in vivo in determining the therapeutic potential of peptide-targeted liposomes.


Assuntos
Integrina alfa4beta1/antagonistas & inibidores , Mieloma Múltiplo/tratamento farmacológico , Nanopartículas/administração & dosagem , Peptídeos/administração & dosagem , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Lipossomos , Camundongos SCID , Mieloma Múltiplo/metabolismo , Nanopartículas/química , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA