Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Physiol Paris ; 99(2-3): 140-5, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16426824

RESUMO

Regulated exocytosis, the process by which the membrane of specific cytoplasmic organelles fuse with the plasma membrane in response to adequate stimulation, is most often considered to serve only for the discharge of secretory products, in the brain especially neurotransmitters and peptides. Growing evidence demonstrates however that non-secretory exocytoses, aimed at the insertion at the cell surface of the organelle membrane, are of great physiological importance and may also have critical roles in specific diseases. Recently, two groups of non-secretory exocytoses have been identified: those aimed at the transfer to the cell surface of specific proteins, that we have proposed to be called the protein-exposing exocytoses; and those aimed at the enlargement of the surface itself, the expansive exocytoses. Here we present the existing knowledge about three types of non-secretory exocytoses that occur in the brain: the protein-exposing exocytoses that transfer ionic receptors to the postsynaptic membrane, the best known example being that of the glutamatergic AMPA receptor, a main actor of synaptic plasticity; the expansive exocytosis necessary for the growth of nerve fibres; and the rapid exocytosis of enlargeosomes, that can induce considerable expansion of the cell surface area in a variety of cells types, including the astrocytes.


Assuntos
Encéfalo/fisiologia , Exocitose/fisiologia , Animais , Encéfalo/citologia , Modelos Biológicos , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA