RESUMO
The results of three experiments demonstrated that the visual system calibrates motion parallax according to absolute-distance information in processing depth. The parallax was created by yoking the relative movement of random dots displayed on a cathode-ray tube to the movements of the head. In Experiment 1, at viewing distances of 40 cm and 80 cm, observers reported the apparent depth produced by motion parallax equivalent to a binocular disparity of 0.47 degree. The mean apparent depth at 80 cm was 2.6 times larger than at 40 cm. In Experiment 2, again at viewing distances of 40 cm and 80 cm, observers adjusted the extent of parallax so that the apparent depth was 7.0 cm. The mean extent of parallax at 80 cm was 31% of that at 40 cm. In Experiment 3, distances ranged from 40 cm to 320 cm, and a wide range of parallax was used. As distance and parallax increased, the perception of a rigid three-dimensional surface was accompanied by rocking motion; perception of depth was replaced by perception of motion in some trials at 320 cm. Moreover, the mean apparent depths were proportional to the viewing distance at 40 cm and 80 cm but not at 160 cm and 320 cm.
Assuntos
Percepção de Profundidade , Sinais (Psicologia) , Percepção de Profundidade/fisiologia , Humanos , Percepção de Movimento , Retina/fisiologiaRESUMO
Random-dot techniques were used to examine the interactions between the depth cues of dynamic occlusion and motion parallax in the perception of three-dimensional (3-D) structures, in two different situations: (a) when an observer moved laterally with respect to a rigid 3-D structure, and (b) when surfaces at different distances moved with respect to a stationary observer. In condition (a), the extent of accretion/deletion (dynamic occlusion) and the amount of relative motion (motion parallax) were both linked to the motion of the observer. When the two cues specified opposite, and therefore contradictory, depth orders, the perceived order in depth of the simulated surfaces was dependent on the magnitude of the depth separation. For small depth separations, motion parallax determined the perceived order, whereas for large separations it was determined by dynamic occlusion. In condition (b), where the motion parallax cues for depth order were inherently ambiguous, depth order was determined principally by the unambiguous occlusion information.