Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Gut ; 72(2): 226-241, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35817555

RESUMO

OBJECTIVE: Gastric cancer (GC) comprises multiple molecular subtypes. Recent studies have highlighted mesenchymal-subtype GC (Mes-GC) as a clinically aggressive subtype with few treatment options. Combining multiple studies, we derived and applied a consensus Mes-GC classifier to define the Mes-GC enhancer landscape revealing disease vulnerabilities. DESIGN: Transcriptomic profiles of ~1000 primary GCs and cell lines were analysed to derive a consensus Mes-GC classifier. Clinical and genomic associations were performed across >1200 patients with GC. Genome-wide epigenomic profiles (H3K27ac, H3K4me1 and assay for transposase-accessible chromatin with sequencing (ATAC-seq)) of 49 primary GCs and GC cell lines were generated to identify Mes-GC-specific enhancer landscapes. Upstream regulators and downstream targets of Mes-GC enhancers were interrogated using chromatin immunoprecipitation followed by sequencing (ChIP-seq), RNA sequencing, CRISPR/Cas9 editing, functional assays and pharmacological inhibition. RESULTS: We identified and validated a 993-gene cancer-cell intrinsic Mes-GC classifier applicable to retrospective cohorts or prospective single samples. Multicohort analysis of Mes-GCs confirmed associations with poor patient survival, therapy resistance and few targetable genomic alterations. Analysis of enhancer profiles revealed a distinctive Mes-GC epigenomic landscape, with TEAD1 as a master regulator of Mes-GC enhancers and Mes-GCs exhibiting preferential sensitivity to TEAD1 pharmacological inhibition. Analysis of Mes-GC super-enhancers also highlighted NUAK1 kinase as a downstream target, with synergistic effects observed between NUAK1 inhibition and cisplatin treatment. CONCLUSION: Our results establish a consensus Mes-GC classifier applicable to multiple transcriptomic scenarios. Mes-GCs exhibit a distinct epigenomic landscape, and TEAD1 inhibition and combinatorial NUAK1 inhibition/cisplatin may represent potential targetable options.


Assuntos
Elementos Facilitadores Genéticos , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Gástricas , Humanos , Cisplatino/metabolismo , Cisplatino/uso terapêutico , Estudos Prospectivos , Proteínas Quinases/genética , Proteínas Repressoras , Estudos Retrospectivos , Neoplasias Gástricas/genética
2.
Gut ; 69(2): 231-242, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31068366

RESUMO

OBJECTIVE: Gastric cancer (GC) is a leading cause of cancer mortality. Previous studies have shown that hepatocyte nuclear factor-4α (HNF4α) is specifically overexpressed in GC and functionally required for GC development. In this study, we investigated, on a genome-wide scale, target genes of HNF4α and oncogenic pathways driven by HNF4α and HNF4α target genes. DESIGN: We performed HNF4α chromatin immunoprecipitation followed by sequencing across multiple GC cell lines, integrating HNF4α occupancy data with (epi)genomic and transcriptome data of primary GCs to define HNF4α target genes of in vitro and in vivo relevance. To investigate mechanistic roles of HNF4α and HNF4α targets, we performed cancer metabolic measurements, drug treatments and functional assays including murine xenograft experiments. RESULTS: Gene expression analysis across 19 tumour types revealed HNF4α to be specifically upregulated in GCs. Unbiased pathway analysis revealed organic acid metabolism as the top HNF4α-regulated pathway, orthogonally supported by metabolomic analysis. Isocitrate dehydrogenase 1 (IDH1) emerged as a convergent HNF4α direct target gene regulating GC metabolism. We show that wild-type IDH1 is essential for GC cell survival, and that certain GC cells can be targeted by IDH1 inhibitors. CONCLUSIONS: Our results highlight a role for HNF4α in sustaining GC oncogenic metabolism, through the regulation of IDH1. Drugs targeting wild-type IDH1 may thus have clinical utility in GCs exhibiting HNF4α overexpression, expanding the role of IDH1 in cancer beyond IDH1/2 mutated malignancies.


Assuntos
Fator 4 Nuclear de Hepatócito/genética , Isocitrato Desidrogenase/metabolismo , Neoplasias Gástricas/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Marcação de Genes/métodos , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Isocitrato Desidrogenase/antagonistas & inibidores , Camundongos Endogâmicos NOD , Terapia de Alvo Molecular/métodos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Regiões Promotoras Genéticas/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Gut ; 69(6): 1039-1052, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31542774

RESUMO

OBJECTIVE: Genomic structural variations (SVs) causing rewiring of cis-regulatory elements remain largely unexplored in gastric cancer (GC). To identify SVs affecting enhancer elements in GC (enhancer-based SVs), we integrated epigenomic enhancer profiles revealed by paired-end H3K27ac ChIP-sequencing from primary GCs with tumour whole-genome sequencing (WGS) data (PeNChIP-seq/WGS). DESIGN: We applied PeNChIP-seq to 11 primary GCs and matched normal tissues combined with WGS profiles of >200 GCs. Epigenome profiles were analysed alongside matched RNA-seq data to identify tumour-associated enhancer-based SVs with altered cancer transcription. Functional validation of candidate enhancer-based SVs was performed using CRISPR/Cas9 genome editing, chromosome conformation capture assays (4C-seq, Capture-C) and Hi-C analysis of primary GCs. RESULTS: PeNChIP-seq/WGS revealed ~150 enhancer-based SVs in GC. The majority (63%) of SVs linked to target gene deregulation were associated with increased tumour expression. Enhancer-based SVs targeting CCNE1, a key driver of therapy resistance, occurred in 8% of patients frequently juxtaposing diverse distal enhancers to CCNE1 proximal regions. CCNE1-rearranged GCs were associated with high CCNE1 expression, disrupted CCNE1 topologically associating domain (TAD) boundaries, and novel TAD interactions in CCNE1-rearranged primary tumours. We also observed IGF2 enhancer-based SVs, previously noted in colorectal cancer, highlighting a common non-coding genetic driver alteration in gastric and colorectal malignancies. CONCLUSION: Integrated paired-end NanoChIP-seq and WGS of gastric tumours reveals tumour-associated regulatory SV in regions associated with both simple and complex genomic rearrangements. Genomic rearrangements may thus exploit enhancer-hijacking as a common mechanism to drive oncogene expression in GC.


Assuntos
Adenocarcinoma/metabolismo , Ciclina E/metabolismo , Elementos Facilitadores Genéticos/genética , Fator de Crescimento Insulin-Like II/metabolismo , Proteínas Oncogênicas/metabolismo , Neoplasias Gástricas/metabolismo , Adenocarcinoma/genética , Variação Estrutural do Genoma/genética , Humanos , Neoplasias Gástricas/genética , Sequenciamento Completo do Genoma
4.
PLoS Genet ; 9(9): e1003795, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24068961

RESUMO

Burkholderia pseudomallei (Bp), the causative agent of the often-deadly infectious disease melioidosis, contains one of the largest prokaryotic genomes sequenced to date, at 7.2 Mb with two large circular chromosomes (1 and 2). To comprehensively delineate the Bp transcriptome, we integrated whole-genome tiling array expression data of Bp exposed to >80 diverse physical, chemical, and biological conditions. Our results provide direct experimental support for the strand-specific expression of 5,467 Sanger protein-coding genes, 1,041 operons, and 766 non-coding RNAs. A large proportion of these transcripts displayed condition-dependent expression, consistent with them playing functional roles. The two Bp chromosomes exhibited dramatically different transcriptional landscapes--Chr 1 genes were highly and constitutively expressed, while Chr 2 genes exhibited mosaic expression where distinct subsets were expressed in a strongly condition-dependent manner. We identified dozens of cis-regulatory motifs associated with specific condition-dependent expression programs, and used the condition compendium to elucidate key biological processes associated with two complex pathogen phenotypes--quorum sensing and in vivo infection. Our results demonstrate the utility of a Bp condition-compendium as a community resource for biological discovery. Moreover, the observation that significant portions of the Bp virulence machinery can be activated by specific in vitro cues provides insights into Bp's capacity as an "accidental pathogen", where genetic pathways used by the bacterium to survive in environmental niches may have also facilitated its ability to colonize human hosts.


Assuntos
Burkholderia pseudomallei/genética , Interações Hospedeiro-Parasita/genética , Melioidose/genética , Transcrição Gênica , Burkholderia pseudomallei/patogenicidade , Cromossomos/genética , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Humanos , Melioidose/microbiologia , Melioidose/patologia , Virulência/genética
5.
BMC Genomics ; 15: 787, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25214426

RESUMO

BACKGROUND: Burkholderia pseudomallei, the causative agent of melioidosis, is a Gram-negative bacterium widely distributed in soil and water in endemic areas. This soil saprophyte can survive harsh environmental conditions, even in soils where herbicides (containing superoxide generators) are abundant. Sigma factor E (σE) is a key regulator of extra-cytoplasmic stress response in Gram-negative bacteria. In this study, we identified the B. pseudomallei σE regulon and characterized the indirect role that σE plays in the regulation of spermidine, contributing to the successful survival of B. pseudomallei in stressful environments. RESULTS: Changes in the global transcriptional profiles of B. pseudomallei wild type and σE mutant under physiological and oxidative stress (hydrogen peroxide) conditions were determined. We identified 307 up-regulated genes under oxidative stress condition. Comparison of the transcriptional profiles of B. pseudomallei wild type and σE mutant under control or oxidative stress conditions identified 85 oxidative-responsive genes regulated by σE, including genes involved in cell membrane repair, maintenance of protein folding and oxidative stress response and potential virulence factors such as a type VI secretion system (T6SS). Importantly, we identified that the speG gene, encoding spermidine-acetyltransferase, is a novel member of the B. pseudomallei σE regulon. The expression of speG was regulated by σE, implying that σE plays an indirect role in the regulation of physiological level of spermidine to protect the bacteria during oxidative stress. CONCLUSION: This study identified B. pseudomallei genes directly regulated by σE in response to oxidative stress and revealed the indirect role of σE in the regulation of the polyamine spermidine (via regulation of speG) for bacterial cell protection during oxidative stress. This study provides new insights into the regulatory mechanisms by which σE contributes to the survival of B. pseudomallei under stressful conditions.


Assuntos
Acetiltransferases/genética , Proteínas de Bactérias/genética , Burkholderia pseudomallei/crescimento & desenvolvimento , Peróxido de Hidrogênio/farmacologia , Fator sigma/metabolismo , Burkholderia pseudomallei/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Fator sigma/genética , Microbiologia do Solo , Espermidina/metabolismo
6.
Proc Natl Acad Sci U S A ; 108(41): 17165-70, 2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-21969582

RESUMO

Known mechanisms of resistance to ß-lactam antibiotics include ß-lactamase expression, altered drug target, decreased bacterial permeability, and increased drug efflux. Here, we describe a unique mechanism of ß-lactam resistance in the biothreat organism Burkholderia pseudomallei (the cause of melioidosis), associated with treatment failure during prolonged ceftazidime therapy of natural infection. Detailed comparisons of the initial ceftazidime-susceptible infecting isolate and subsequent ceftazidime-resistant variants from six patients led us to identify a common, large-scale genomic loss involving a minimum of 49 genes in all six resistant strains. Mutational analysis of wild-type B. pseudomallei demonstrated that ceftazidime resistance was due to deletion of a gene encoding a penicillin-binding protein 3 (BPSS1219) present within the region of genomic loss. The clinical ceftazidime-resistant variants failed to grow using commonly used laboratory culture media, including commercial blood cultures, rendering the variants almost undetectable in the diagnostic laboratory. Melioidosis is notoriously difficult to cure and clinical treatment failure is common in patients treated with ceftazidime, the drug of first choice across most of Southeast Asia where the majority of cases are reported. The mechanism described here represents an explanation for ceftazidime treatment failure, and may be a frequent but undetected resistance event.


Assuntos
Antibacterianos/farmacologia , Burkholderia pseudomallei/efeitos dos fármacos , Burkholderia pseudomallei/metabolismo , Ceftazidima/farmacologia , Proteínas de Ligação às Penicilinas/metabolismo , Sudeste Asiático , Sequência de Bases , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/isolamento & purificação , DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana/fisiologia , Deleção de Genes , Genes Bacterianos , Humanos , Melioidose/tratamento farmacológico , Melioidose/microbiologia , Proteínas de Ligação às Penicilinas/genética , Falha de Tratamento
7.
J Bacteriol ; 195(24): 5487-98, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24097950

RESUMO

Burkholderia pseudomallei, the causative agent of melioidosis, contains a large pathogen genome (7.2 Mb) with ∼2,000 genes of putative or unknown function. Interactions with potential hosts and environmental factors may induce rapid adaptations in these B. pseudomallei genes, which can be discerned through evolutionary analysis of multiple B. pseudomallei genomes. Here we show that several previously uncharacterized B. pseudomallei genes bearing genetic signatures of rapid adaptation (positive selection) can induce diverse cellular phenotypes when expressed in mammalian cells. Notably, several of these phenotypes are plausibly related to virulence, including multinuclear giant cell formation, apoptosis, and autophagy induction. Specifically, we show that BPSS0180, a type VI cluster-associated gene, is capable of inducing autophagy in both phagocytic and nonphagocytic mammalian cells. Following infection of macrophages, a B. pseudomallei mutant disrupted in BPSS0180 exhibited significantly decreased colocalization with LC3 and impaired intracellular survival; these phenotypes were rescued by introduction of an intact BPSS0180 gene. The results suggest that BPSS0180 may be a novel inducer of host cell autophagy that contributes to B. pseudomallei intracellular growth. More generally, our study highlights the utility of applying evolutionary principles to microbial genomes to identify novel virulence genes.


Assuntos
Autofagia , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/patogenicidade , Interações Hospedeiro-Patógeno , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Animais , Apoptose , Linhagem Celular , Técnicas de Inativação de Genes , Teste de Complementação Genética , Células Gigantes/microbiologia , Macrófagos/microbiologia , Camundongos , Viabilidade Microbiana
8.
Genes Chromosomes Cancer ; 51(6): 545-56, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22337647

RESUMO

Integration of genome-wide profiles of DNA copy number alterations (CNAs) and gene expression variations (GEVs) could provide combined power to the identification of driver genes and gene networks in tumors. Here we merge matched genome and transcriptome microarray analyses from neuroblastoma samples to derive correlation patterns of CNAs and GEVs, irrespective of their genomic location. Neuroblastoma correlation patterns are strongly asymmetrical, being on average 10 CNAs linked to 1 GEV, and show the widespread prevalence of long range covariance. Functional enrichment and network analysis of the genes covarying with CNAs consistently point to a major cell function, the regulation of mitotic spindle assembly. Moreover, elevated expression of 14 key genes promoting this function is strongly associated to high-risk neuroblastomas with 1p loss and MYCN amplification in a set of 410 tumor samples (P < 0.00001). Independent CNA/GEV profiling on neuroblastoma cell lines shows that increased levels of expression of these genes are linked to 1p loss. By this approach, we reveal a convergence of clustered neuroblastoma CNAs toward increased expression of a group of prognostic and functionally cooperating genes. We therefore propose gain of function of the spindle assembly machinery as a lesion potentially offering new targets for therapy of high-risk neuroblastoma.


Assuntos
Aberrações Cromossômicas , Neuroblastoma/genética , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Fuso Acromático/genética , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/metabolismo , Proteínas Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Oncogênicas/metabolismo , Prognóstico , Fuso Acromático/metabolismo
9.
Nat Cell Biol ; 25(5): 765-777, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37095322

RESUMO

PBRM1 encodes an accessory subunit of the PBAF SWI/SNF chromatin remodeller, and the inactivation of PBRM1 is a frequent event in kidney cancer. However, the impact of PBRM1 loss on chromatin remodelling is not well examined. Here we show that, in VHL-deficient renal tumours, PBRM1 deficiency results in ectopic PBAF complexes that localize to de novo genomic loci, activating the pro-tumourigenic NF-κB pathway. PBRM1-deficient PBAF complexes retain the association between SMARCA4 and ARID2, but have loosely tethered BRD7. The PBAF complexes redistribute from promoter proximal regions to distal enhancers containing NF-κB motifs, heightening NF-κB activity in PBRM1-deficient models and clinical samples. The ATPase function of SMARCA4 maintains chromatin occupancy of pre-existing and newly acquired RELA specific to PBRM1 loss, activating downstream target gene expression. Proteasome inhibitor bortezomib abrogates RELA occupancy, suppresses NF-κB activation and delays growth of PBRM1-deficient tumours. In conclusion, PBRM1 safeguards the chromatin by repressing aberrant liberation of pro-tumourigenic NF-κB target genes by residual PBRM1-deficient PBAF complexes.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Genômica , Neoplasias Renais/metabolismo , NF-kappa B/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
10.
Cancer Res ; 82(14): 2538-2551, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35583999

RESUMO

Mutations in the DNA mismatch repair gene MSH2 are causative of microsatellite instability (MSI) in multiple cancers. Here, we discovered that besides its well-established role in DNA repair, MSH2 exerts a novel epigenomic function in gastric cancer. Unbiased CRISPR-based mass spectrometry combined with genome-wide CRISPR functional screening revealed that in early-stage gastric cancer MSH2 genomic binding is not randomly distributed but rather is associated specifically with tumor-associated super-enhancers controlling the expression of cell adhesion genes. At these loci, MSH2 genomic binding was required for chromatin rewiring, de novo enhancer-promoter interactions, maintenance of histone acetylation levels, and regulation of cell adhesion pathway expression. The chromatin function of MSH2 was independent of its DNA repair catalytic activity but required MSH6, another DNA repair gene, and recruitment to gene loci by the SWI/SNF chromatin remodeler SMARCA4/BRG1. Loss of MSH2 in advanced gastric cancers was accompanied by deficient cell adhesion pathway expression, epithelial-mesenchymal transition, and enhanced tumorigenesis in vitro and in vivo. However, MSH2-deficient gastric cancers also displayed addiction to BAZ1B, a bromodomain-containing family member, and consequent synthetic lethality to bromodomain and extraterminal motif (BET) inhibition. Our results reveal a role for MSH2 in gastric cancer epigenomic regulation and identify BET inhibition as a potential therapy in MSH2-deficient gastric malignancies. SIGNIFICANCE: DNA repair protein MSH2 binds and regulates cell adhesion genes by enabling enhancer-promoter interactions, and loss of MSH2 causes deficient cell adhesion and bromodomain and extraterminal motif inhibitor synthetic lethality in gastric cancer.


Assuntos
Reparo de Erro de Pareamento de DNA , Neoplasias Gástricas , Adesão Celular/genética , Cromatina/genética , DNA Helicases/genética , Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/genética , Mutação em Linhagem Germinativa , Humanos , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Proteínas Nucleares/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Fatores de Transcrição/genética
11.
Genome Med ; 13(1): 158, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635154

RESUMO

BACKGROUND: Enhancers are distal cis-regulatory elements required for cell-specific gene expression and cell fate determination. In cancer, enhancer variation has been proposed as a major cause of inter-patient heterogeneity-however, most predicted enhancer regions remain to be functionally tested. METHODS: We analyzed 132 epigenomic histone modification profiles of 18 primary gastric cancer (GC) samples, 18 normal gastric tissues, and 28 GC cell lines using Nano-ChIP-seq technology. We applied Capture-based Self-Transcribing Active Regulatory Region sequencing (CapSTARR-seq) to assess functional enhancer activity. An Activity-by-contact (ABC) model was employed to explore the effects of histone acetylation and CapSTARR-seq levels on enhancer-promoter interactions. RESULTS: We report a comprehensive catalog of 75,730 recurrent predicted enhancers, the majority of which are GC-associated in vivo (> 50,000) and associated with lower somatic mutation rates inferred by whole-genome sequencing. Applying CapSTARR-seq to the enhancer catalog, we observed significant correlations between CapSTARR-seq functional activity and H3K27ac/H3K4me1 levels. Super-enhancer regions exhibited increased CapSTARR-seq signals compared to regular enhancers, even when decoupled from native chromatin contexture. We show that combining histone modification and CapSTARR-seq functional enhancer data improves the prediction of enhancer-promoter interactions and pinpointing of germline single nucleotide polymorphisms (SNPs), somatic copy number alterations (SCNAs), and trans-acting TFs involved in GC expression. We identified cancer-relevant genes (ING1, ARL4C) whose expression between patients is influenced by enhancer differences in genomic copy number and germline SNPs, and HNF4α as a master trans-acting factor associated with GC enhancer heterogeneity. CONCLUSIONS: Our results indicate that combining histone modification and functional assay data may provide a more accurate metric to assess enhancer activity than either platform individually, providing insights into the relative contribution of genetic (cis) and regulatory (trans) mechanisms to GC enhancer functional heterogeneity.


Assuntos
Elementos Facilitadores Genéticos , Epigenômica , Neoplasias Gástricas/genética , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Acetilação , Linhagem Celular Tumoral , Proliferação de Células , Cromatina , Regulação Neoplásica da Expressão Gênica , Genômica , Histonas/metabolismo , Humanos , Proteína 1 Inibidora do Crescimento/genética , Proteína 1 Inibidora do Crescimento/metabolismo , Oncogenes , Regiões Promotoras Genéticas , RNA-Seq , Transcriptoma , Sequenciamento Completo do Genoma
12.
J Clin Invest ; 130(6): 3005-3020, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32364535

RESUMO

Transcriptional reactivation of telomerase catalytic subunit (TERT) is a frequent hallmark of cancer, occurring in 90% of human malignancies. However, specific mechanisms driving TERT reactivation remain obscure for many tumor types and in particular gastric cancer (GC), a leading cause of global cancer mortality. Here, through comprehensive genomic and epigenomic analysis of primary GCs and GC cell lines, we identified the transcription factor early B cell factor 1 (EBF1) as a TERT transcriptional repressor and inactivation of EBF1 function as a major cause of TERT upregulation. Abolishment of EBF1 function occurs through 3 distinct (epi)genomic mechanisms. First, EBF1 is epigenetically silenced via DNA methyltransferase, polycomb-repressive complex 2 (PRC2), and histone deacetylase activity in GCs. Second, recurrent, somatic, and heterozygous EBF1 DNA-binding domain mutations result in the production of dominant-negative EBF1 isoforms. Third, more rarely, genomic deletions and rearrangements proximal to the TERT promoter remobilize or abolish EBF1-binding sites, derepressing TERT and leading to high TERT expression. EBF1 is also functionally required for various malignant phenotypes in vitro and in vivo, highlighting its importance for GC development. These results indicate that multimodal genomic and epigenomic alterations underpin TERT reactivation in GC, converging on transcriptional repressors such as EBF1.


Assuntos
Epigenômica , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Neoplasias Gástricas/metabolismo , Telomerase/biossíntese , Transativadores/metabolismo , Linhagem Celular Tumoral , Humanos , Mutação , Proteínas de Neoplasias/genética , Elementos de Resposta , Neoplasias Gástricas/genética , Telomerase/genética , Transativadores/genética
13.
Eur J Cancer ; 123: 48-57, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31655359

RESUMO

BACKGROUND: DNA methylation signatures describing distinct histological subtypes of oesophageal cancer have been reported. We studied DNA methylation in samples from the MRC OE02 phase III trial, which randomised patients with resectable oesophageal cancer to surgery alone (S) or neoadjuvant chemotherapy followed by surgery (CS). AIM: The aim of the study was to identify epigenetic signatures predictive of chemotherapy benefit in patients with oesophageal adenocarcinoma (OAC) from the OE02 trial and validate the findings in an independent cohort. METHODS: DNA methylation was analysed using the Illumina GoldenGate platform on surgically resected OAC specimens from patients in the OE02 trial. Cox proportional hazard analysis was performed to select probes predictive of survival in the CS arm. Non-negative matrix factorisation was used to perform clustering and delineate DNA methylation signatures. The findings were validated in an independent cohort of patients with gastroesophageal adenocarcinoma treated with neoadjuvant chemotherapy. RESULTS: A total of 229 patients with OAC were analysed from the OE02 trial (118 in the CS arm and 111 in the S arm). There was no difference in DNA methylation status between the CS and S arms. A metagene signature was created by dichotomising samples into two clusters. In cluster 1, patients in the CS arm had significant overall survival (OS) benefit (median OS CS: 931 days vs. S: 536 days [HR: 1.54, P = 0.031]). In cluster 2, patients in the CS arm had similar (or worse) OS compared with patients in the S arm (CS: 348 days vs. S: 472 days [HR: 0.70, P = 0.1], and test of interaction was significant (p = 0.005). In the validation cohort (n = 13), there was no difference in DNA methylation status in paired pre- and post-treatment samples. When the epigenetic signature was applied, cluster 1 samples had better OS (median OS, cluster 1: 1174 days vs. cluster 2: 392 days, HR: 3.47, p = 0.059) CONCLUSIONS: This is the first and largest study of DNA methylation in patients with OAC uniformly treated in a randomised phase III trial. We identified an epigenetic signature that may serve as a predictive biomarker for chemotherapy benefit in OAC.


Assuntos
Adenocarcinoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Metilação de DNA , Epigênese Genética , Neoplasias Esofágicas/tratamento farmacológico , Terapia Neoadjuvante , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Cisplatino/administração & dosagem , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Feminino , Fluoruracila/administração & dosagem , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Ensaios Clínicos Controlados Aleatórios como Assunto , Taxa de Sobrevida
14.
Nat Commun ; 9(1): 1520, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670109

RESUMO

Tissue-specific driver mutations in non-coding genomic regions remain undefined for most cancer types. Here, we unbiasedly analyze 212 gastric cancer (GC) whole genomes to identify recurrently mutated non-coding regions in GC. Applying comprehensive statistical approaches to accurately model background mutational processes, we observe significant enrichment of non-coding indels (insertions/deletions) in three gastric lineage-specific genes. We further identify 34 mutation hotspots, of which 11 overlap CTCF binding sites (CBSs). These CBS hotspots remain significant even after controlling for a genome-wide elevated mutation rate at CBSs. In 3 out of 4 tested CBS hotspots, mutations are nominally associated with expression change of neighboring genes. CBS hotspot mutations are enriched in tumors showing chromosomal instability, co-occur with neighboring chromosomal aberrations, and are common in gastric (25%) and colorectal (19%) tumors but rare in other cancer types. Mutational disruption of specific CBSs may thus represent a tissue-specific mechanism of tumorigenesis conserved across gastrointestinal cancers.


Assuntos
Fator de Ligação a CCCTC/genética , Instabilidade Cromossômica , Análise Mutacional de DNA , Neoplasias Gastrointestinais/genética , Mutação INDEL , Mutação , Sítios de Ligação , Linhagem Celular Tumoral , Aberrações Cromossômicas , Sequência Conservada , Bases de Dados Genéticas , Epigênese Genética , Reações Falso-Positivas , Perfilação da Expressão Gênica , Genoma Humano , Genômica , Humanos , Modelos Estatísticos , Taxa de Mutação
15.
Nat Commun ; 9(1): 100, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311615

RESUMO

The repression of telomerase activity during cellular differentiation promotes replicative aging and functions as a physiological barrier for tumorigenesis in long-lived mammals, including humans. However, the underlying mechanisms remain largely unclear. Here we describe how miR-615-3p represses hTERT expression. mir-615-3p is located in an intron of the HOXC5 gene, a member of the highly conserved homeobox family of transcription factors controlling embryogenesis and development. Unexpectedly, we found that HoxC5 also represses hTERT expression by disrupting the long-range interaction between hTERT promoter and its distal enhancer. The 3'UTR of hTERT and its upstream enhancer region are well conserved in long-lived primates. Both mir-615-3p and HOXC5 are activated upon differentiation, which constitute a feed-forward loop that coordinates transcriptional and post-transcriptional repression of hTERT during cellular differentiation. Deregulation of HOXC5 and mir-615-3p expression may contribute to the activation of hTERT in human cancers.


Assuntos
Diferenciação Celular/genética , Transformação Celular Neoplásica/genética , Proteínas de Homeodomínio/genética , MicroRNAs/genética , Telomerase/biossíntese , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Animais , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos/genética , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Camundongos , Neoplasias/genética , Neoplasias/patologia , Regiões Promotoras Genéticas/genética
17.
Cancer Discov ; 7(11): 1284-1305, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28893800

RESUMO

Protein-coding mutations in clear cell renal cell carcinoma (ccRCC) have been extensively characterized, frequently involving inactivation of the von Hippel-Lindau (VHL) tumor suppressor. Roles for noncoding cis-regulatory aberrations in ccRCC tumorigenesis, however, remain unclear. Analyzing 10 primary tumor/normal pairs and 9 cell lines across 79 chromatin profiles, we observed pervasive enhancer malfunction in ccRCC, with cognate enhancer-target genes associated with tissue-specific aspects of malignancy. Superenhancer profiling identified ZNF395 as a ccRCC-specific and VHL-regulated master regulator whose depletion causes near-complete tumor elimination in vitro and in vivoVHL loss predominantly drives enhancer/superenhancer deregulation more so than promoters, with acquisition of active enhancer marks (H3K27ac, H3K4me1) near ccRCC hallmark genes. Mechanistically, VHL loss stabilizes HIF2α-HIF1ß heterodimer binding at enhancers, subsequently recruiting histone acetyltransferase p300 without overtly affecting preexisting promoter-enhancer interactions. Subtype-specific driver mutations such as VHL may thus propagate unique pathogenic dependencies in ccRCC by modulating epigenomic landscapes and cancer gene expression.Significance: Comprehensive epigenomic profiling of ccRCC establishes a compendium of somatically altered cis-regulatory elements, uncovering new potential targets including ZNF395, a ccRCC master regulator. Loss of VHL, a ccRCC signature event, causes pervasive enhancer malfunction, with binding of enhancer-centric HIF2α and recruitment of histone acetyltransferase p300 at preexisting lineage-specific promoter-enhancer complexes. Cancer Discov; 7(11); 1284-305. ©2017 AACR.See related commentary by Ricketts and Linehan, p. 1221This article is highlighted in the In This Issue feature, p. 1201.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma de Células Renais/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Fatores de Transcrição de p300-CBP/genética , Carcinogênese/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Cromatina , Elementos Facilitadores Genéticos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Oncogenes/genética , Regiões Promotoras Genéticas/genética , Sequências Reguladoras de Ácido Nucleico/genética
18.
Cancer Discov ; 7(6): 630-651, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28320776

RESUMO

Promoter elements play important roles in isoform and cell type-specific expression. We surveyed the epigenomic promoter landscape of gastric adenocarcinoma, analyzing 110 chromatin profiles (H3K4me3, H3K4me1, H3K27ac) of primary gastric cancers, gastric cancer lines, and nonmalignant gastric tissues. We identified nearly 2,000 promoter alterations (somatic promoters), many deregulated in various epithelial malignancies and mapping frequently to alternative promoters within the same gene, generating potential pro-oncogenic isoforms (RASA3). Somatic promoter-associated N-terminal peptides displaying relative depletion in tumors exhibited high-affinity MHC binding predictions and elicited potent T-cell responses in vitro, suggesting a mechanism for reducing tumor antigenicity. In multiple patient cohorts, gastric cancers with high somatic promoter usage also displayed reduced T-cell cytolytic marker expression. Somatic promoters are enriched in PRC2 occupancy, display sensitivity to EZH2 therapeutic inhibition, and are associated with novel cancer-associated transcripts. By generating tumor-specific isoforms and decreasing tumor antigenicity, epigenomic promoter alterations may thus drive intrinsic tumorigenesis and also allow nascent cancers to evade host immunity.Significance: We apply epigenomic profiling to demarcate the promoter landscape of gastric cancer. Many tumor-specific promoters activate different promoters in the same gene, some generating pro-oncogenic isoforms. Tumor-specific promoters also reduce tumor antigenicity by causing relative depletion of immunogenic peptides, contributing to cancer immunoediting and allowing tumors to evade host immune attack. Cancer Discov; 7(6); 630-51. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 539.


Assuntos
Adenocarcinoma/genética , Regiões Promotoras Genéticas , Neoplasias Gástricas/genética , Linhagem Celular Tumoral , Epigenômica , Humanos
19.
Trends Cancer ; 2(10): 585-605, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-28741489

RESUMO

Chromatin alterations are integral to the pathogenic process of cancer, as demonstrated by recent discoveries of frequent mutations in chromatin-modifier genes and aberrant DNA methylation states in different cancer types. Progress is being made on elucidating how chromatin alterations, and how proteins catalyzing these alterations, mechanistically contribute to tissue-specific tumorigenesis. In parallel, technologies enabling the genome-wide profiling of histone modifications have revealed the existence of noncoding driver genetic alterations in cancer. In this review, we survey the current knowledge of coding and noncoding cancer drivers, and discuss their impact on the chromatin landscape. Translational implications of these findings for novel cancer therapies are also presented.


Assuntos
Cromatina/genética , Neoplasias/genética , Animais , Cromatina/química , Epigênese Genética , Epigenômica , Humanos , Mutação
20.
Nat Commun ; 7: 12983, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27677335

RESUMO

Regulatory enhancer elements in solid tumours remain poorly characterized. Here we apply micro-scale chromatin profiling to survey the distal enhancer landscape of primary gastric adenocarcinoma (GC), a leading cause of global cancer mortality. Integrating 110 epigenomic profiles from primary GCs, normal gastric tissues and cell lines, we highlight 36,973 predicted enhancers and 3,759 predicted super-enhancers respectively. Cell-line-defined super-enhancers can be subclassified by their somatic alteration status into somatic gain, loss and unaltered categories, each displaying distinct epigenetic, transcriptional and pathway enrichments. Somatic gain super-enhancers are associated with complex chromatin interaction profiles, expression patterns correlated with patient outcome and dense co-occupancy of the transcription factors CDX2 and HNF4α. Somatic super-enhancers are also enriched in genetic risk SNPs associated with cancer predisposition. Our results reveal a genome-wide reprogramming of the GC enhancer and super-enhancer landscape during tumorigenesis, contributing to dysregulated local and regional cancer gene expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA