Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Clin Microbiol Antimicrob ; 22(1): 97, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940983

RESUMO

BACKGROUND: Tsukamurella spp. are obligate aerobic, gram-positive, non-motile, and slightly acid-fast bacilli belonging to the Actinomycetes family. They share many characteristics with Nocardia, Rhodococcus, Gordonia, and the rapidly growing Mycobacterium species. Therefore, standard testing may misidentify Tsukamurella spp. as another species. Accurate and rapid diagnosis is critical for proper infection management, but identification of this bacterium is difficult in the standard laboratory setting. CASE PRESENTATION: A bloodstream infection caused by a gram-positive bacterium and related to a central venous catheter was identified in an immunocompromised 2-year-old girl. Tsukamurella tyrosinosolvens was identified by modified secA1 sequencing. Antibiotic treatment and removal of the central venous catheter resolved the infection. Inappropriate management of the catheter during an overnight stay outside of the hospital was considered as a possible source of infection. CONCLUSIONS: SecA1 sequencing may be a useful diagnostic tool in the identification of T. tyrosinosolvens. Providing proper central venous catheter care instructions to patients, their families, and medical staff is important for infection prevention.


Assuntos
Actinobacteria , Actinomycetales , Infecções Relacionadas a Cateter , Cateteres Venosos Centrais , Sepse , Pré-Escolar , Feminino , Humanos , Actinobacteria/genética , Actinomycetales/genética , Bactérias Aeróbias , Infecções Relacionadas a Cateter/diagnóstico , Infecções Relacionadas a Cateter/tratamento farmacológico , Infecções Relacionadas a Cateter/microbiologia , Sepse/microbiologia
2.
J Infect Chemother ; 29(4): 376-383, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36682607

RESUMO

OBJECTIVE: Elizabethkingia anophelis causes meningitis, bloodstream infections, and respiratory infections in immunocompromised individuals. We examined two E. anophelis strains isolated from the first life-threatening cases caused by this species in Japan to determine the phylogenetic origin and genomic features of them. METHODS: We performed whole genome-based analysis to clarify the genetic relationship for the two strains (EK0004 and EK0079) and Elizabethkingia sp. strains isolated from worldwide and to characterize the genomic features such as the prevalence of virulence- and antimicrobial resistance (AMR)-related genes. PATIENTS: A 29-year-old man with hepatosplenic T-cell lymphoma and a 52-year-old man with systemic lupus erythematosus developed fatal bacteremia and meningitis due to E. anophelis, respectively. RESULTS: Two strains, EK0004 and EK0079, were genetically different but most closely related to the strains isolated from the largest outbreak in Wisconsin, USA from 2015 to 2016, and the strain isolated from cerebrospinal fluid of a patient in Florida, USA in 1982, respectively. The two strains contained AMR-related genes such as those encoding for an extended-spectrum ß-lactamase and multiple metallo-ß-lactamases and several virulence-related genes such as capsular polysaccharide synthesis gene clusters. CONCLUSIONS: Although further functional analyses are required to understand the virulence of these clones, these finding suggests that enough caution of E. anophelis infection in immunocompromised patients is required since the number of infections by this species is increasing outside Japan.


Assuntos
Infecções por Flavobacteriaceae , Genoma Bacteriano , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Genoma Bacteriano/genética , Filogenia , Japão , Infecções por Flavobacteriaceae/epidemiologia , Infecções por Flavobacteriaceae/genética , Genômica
3.
Genome Res ; 29(9): 1495-1505, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31439690

RESUMO

How pathogens evolve their virulence to humans in nature is a scientific issue of great medical and biological importance. Shiga toxin (Stx)-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) are the major foodborne pathogens that can cause hemolytic uremic syndrome and infantile diarrhea, respectively. The locus of enterocyte effacement (LEE)-encoded type 3 secretion system (T3SS) is the major virulence determinant of EPEC and is also possessed by major STEC lineages. Cattle are thought to be the primary reservoir of STEC and EPEC. However, genome sequences of bovine commensal E. coli are limited, and the emerging process of STEC and EPEC is largely unknown. Here, we performed a large-scale genomic comparison of bovine commensal E. coli with human commensal and clinical strains, including EPEC and STEC, at a global level. The analyses identified two distinct lineages, in which bovine and human commensal strains are enriched, respectively, and revealed that STEC and EPEC strains have emerged in multiple sublineages of the bovine-associated lineage. In addition to the bovine-associated lineage-specific genes, including fimbriae, capsule, and nutrition utilization genes, specific virulence gene communities have been accumulated in stx- and LEE-positive strains, respectively, with notable overlaps of community members. Functional associations of these genes probably confer benefits to these E. coli strains in inhabiting and/or adapting to the bovine intestinal environment and drive their evolution to highly virulent human pathogens under the bovine-adapted genetic background. Our data highlight the importance of large-scale genome sequencing of animal strains in the studies of zoonotic pathogens.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli/classificação , Fatores de Virulência/genética , Sequenciamento Completo do Genoma/métodos , Animais , Bovinos , Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/genética , Escherichia coli/genética , Escherichia coli/patogenicidade , Proteínas de Escherichia coli/genética , Evolução Molecular , Redes Reguladoras de Genes , Genoma Bacteriano , Humanos , Filogenia , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/patogenicidade , Simbiose
4.
Foodborne Pathog Dis ; 19(12): 823-829, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36322900

RESUMO

Escherichia albertii is an emerging enteropathogen. Several foodborne outbreaks of E. albertii have been reported in Japan; however, foods associated with most outbreaks remain unidentified. Therefore, polymerase chain reaction (PCR) assays detecting E. albertii specifically and sensitively are required. Primers and probe for real-time PCR assays targeting E. albertii-specific gene (EA-rtPCR) was designed. With 74 strains, including 43 E. albertii strains and several of its close relatives, EA-rtPCR specifically amplified E. albertii; therefore, the sensitivity of EA-rtPCR was then evaluated. The detection limits were 2.8 and 2.0-3.2 log colony-forming unit (CFU)/mL for E. albertii culture and enriched chicken culture inoculated with the pathogen, respectively. In addition, E. albertii was detected from 25 g of chicken meat inoculated with 0.1 log CFU of the pathogen by EA-rtPCR. The detection of E. albertii from chicken meat by EA-rtPCR was also evaluated by comparing with the nested-PCR assay, and 28 retail chicken meat and 193 dissected body parts from 21 chicken carcass were tested. One and three chicken meat were positive in the nested-PCR assay and EA-rtPCR, respectively. Fourteen carcasses had at least one body part that was positive for EA-rtPCR, and 36 and 48 samples were positive for the nested-PCR assay and EA-rtPCR, respectively. A total of 37 strains of E. albertii were isolated from seven PCR-positive samples obtained from six chicken carcass. All E. albertii isolates harbored eae gene, and were classified as E. albertii O-genotype (EAOg)3 or EAOg4 by EAO-genotyping. The EA-rtPCR developed in this study has potential to improve E. albertii detection in food and advance research on E. albertii infection.


Assuntos
Galinhas , Escherichia , Animais , Reação em Cadeia da Polimerase em Tempo Real , Escherichia/genética , Carne
5.
J Clin Microbiol ; 59(3)2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33328174

RESUMO

Shiga toxin-producing Escherichia coli (STEC) is an important foodborne pathogen. Although most cases of STEC infection in humans are due to O157 and non-O157 serogroups, there are also reports of infection with STEC strains that cannot be serologically classified into any O serogroup (O-serogroup untypeable [OUT]). Recently, it has become clear that even OUT strains can be subclassified based on the diversity of O-antigen biosynthesis gene cluster (O-AGC) sequences. Cattle are thought to be a major reservoir of STEC strains belonging to various serotypes; however, the internal composition of OUT STEC strains in cattle remains unknown. In this study, we screened 366 STEC strains isolated from healthy cattle by using multiplex PCR kits including primers that targeted novel O-AGC types (Og types) found in OUT E. coli and Shigella strains in previous studies. Interestingly, 94 (25.7%) of these strains could be classified into 13 novel Og types. Genomic analysis revealed that the results of the in silico serotyping of novel Og-type strains were perfectly consistent with those of the PCR experiment. In addition, it was revealed that a dual Og8+OgSB17-type strain carried two types of O-AGCs from E. coli O8 and Shigella boydii type 17 tandemly inserted at the locus, with both antigens expressed on the cell surface. The results of this comprehensive analysis of cattle-derived STEC strains may help improve our understanding of the strains circulating in the environment. Additionally, the DNA-based serotyping systems used in this study could be used in future epidemiological studies and risk assessments of other STEC strains.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Animais , Bovinos , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/genética , Fezes , Sorogrupo , Sorotipagem , Escherichia coli Shiga Toxigênica/genética
6.
Foodborne Pathog Dis ; 17(2): 144-150, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31603704

RESUMO

Zoonotic pathogen Escherichia albertii has been identified as the cause of several human disease outbreaks; however, factors such as the general symptoms and incubation period of E. albertii infection have yet to be defined. Therefore, we aimed to determine the unique aspects of E. albertii outbreaks in Japan and to examine the genetic characteristics of the causative pathogen. We studied all known E. albertii outbreaks that occurred in Japan up until 2015, which consisted of five confirmed outbreaks and one putative outbreak (Outbreaks 1-6). Outbreaks were re-examined based on personal communications between researchers in prefectural and municipal public health institutes, and through examination of any published study conducted at the time. Draft genome sequences of outbreak-associated E. albertii isolates were also generated. The most common symptom displayed by patients across the six episodes was watery diarrhea (>80%), followed by abdominal pain (50-84%) and fever (37.0-39.5°C) (26-44%). The estimated average incubation period of E. albertii infection was 12-24 h. We assumed that most of the outbreaks were foodborne or waterborne, with restaurant foods, restaurant water, and boxed lunches being the suspected transmission vehicles. Three of the six outbreak-associated E. albertii isolates possessed intact ETT2 regions, while the remaining isolates contained disrupted ETT2-encoding genes. Virulence gene screening revealed that more than half (44/70) of the tested genes were present in all 5 strains examined, and that each of the strains contained more than 1 gene from 14 out of the 21 groups of virulence genes examined in this study. The five E. albertii strains were classified into four of the five known phylogroups. Therefore, we determined that multiple E. albertii genotypes in Japan have the potential to cause outbreaks of diarrhea, abdominal pain, and/or fever following infection of a human host.


Assuntos
Infecções por Enterobacteriaceae/epidemiologia , Escherichia/genética , Escherichia/patogenicidade , Sistemas de Secreção Tipo III/genética , Surtos de Doenças , Infecções por Enterobacteriaceae/microbiologia , Doenças Transmitidas por Alimentos/microbiologia , Genoma Bacteriano , Genótipo , Humanos , Japão/epidemiologia , Filogenia , Fatores de Virulência/genética , Doenças Transmitidas pela Água/microbiologia
7.
J Infect Chemother ; 25(12): 1047-1049, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31196773
8.
Appl Environ Microbiol ; 83(11)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28314730

RESUMO

Erysipelothrix rhusiopathiae causes swine erysipelas, an important infectious disease in the swine industry. In Japan, the incidence of acute swine erysipelas due to E. rhusiopathiae serovar 1a has recently increased markedly. To study the genetic relatedness of the strains from the recent cases, we analyzed 34 E. rhusiopathiae serovar 1a swine isolates collected between 1990 and 2011 and further investigated the possible association of the live Koganei 65-0.15 vaccine strain (serovar 1a) with the increase in cases. Pulsed-field gel electrophoresis analysis revealed no marked variation among the isolates; however, sequencing analysis of a hypervariable region in the surface-protective antigen A gene (spaA) revealed that the strains isolated after 2007 exhibited the same spaA genotype and could be differentiated from older strains. Phylogenetic analysis based on genome-wide single-nucleotide polymorphisms (SNPs) revealed that the Japanese strains examined were closely related, showing a relatively small number of SNPs among them. The strains were classified into four major lineages, with Koganei 65-0.15 (lineage III) being phylogenetically separated from the other three lineages. The strains isolated after 2007 and the two older strains constituted one major lineage (lineage IV) with a specific spaA genotype (M203/I257-SpaA), while the recent isolates were further divided into two geographic groups. The remaining older isolates belonged to either lineage I, with the I203/L257-SpaA type, or lineage II, with the I203/I257-SpaA type. These results indicate that the recent increased incidence of acute swine erysipelas in Japan is associated with two sublineages of lineage IV, which have independently evolved in two different geographic regions.IMPORTANCE Using large-scale whole-genome sequence data from Erysipelothrix rhusiopathiae isolates from a wide range of hosts and geographic origins, a recent study clarified the existence of three distinct clades (clades 1, 2, and 3) that are found across multiple continents and host species, representing both livestock and wildlife, and an "intermediate" clade between clade 2 and the dominant clade 3 within the species. In this study, we found that the E. rhusiopathiae Japanese strains examined exhibited remarkably low levels of genetic diversity and confirmed that all of the Japanese and Chinese swine isolates examined in this study belong to clonal lineages within the intermediate clade. We report that spaA genotyping of E. rhusiopathiae strains is a practical alternative to whole-genome sequencing analysis of the E. rhusiopathiae isolates from eastern Asian countries.


Assuntos
Erysipelothrix/classificação , Erysipelothrix/isolamento & purificação , Genoma Bacteriano , Polimorfismo de Nucleotídeo Único , Erisipela Suína/microbiologia , Animais , Proteínas de Bactérias/genética , Erysipelothrix/genética , Genótipo , Japão , Filogenia , Suínos
9.
J Clin Microbiol ; 54(8): 2128-34, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27252465

RESUMO

Enteroaggregative Escherichia coli (EAEC) causes acute or persistent diarrhea. The aggR gene is widely used as a marker for typical EAEC. The heterogeneity of EAEC is well known; however, there are few reports on the phylogenetic relationships of EAEC. Recently, CTX-M extended-spectrum ß-lactamase (ESBL)-producing EAEC strains have been reported worldwide. To characterize EAEC strains in Japan, we investigated the population structure of EAEC. A total of 167 aggR-positive strains isolated from stool specimens from diarrheal patients in Kagoshima (139 strains) and Osaka (28 strains), Japan, between 1992 and 2010 were examined for the prevalence of EAEC virulence markers, the blaCTX-M gene, and the capacity to form biofilms. Multilocus sequence typing was also conducted. EAEC strains were widely distributed across four major E. coli phylogroups. Strains of O111:H21/clonal group 40 (CG40) (30 strains), O126:H27/CG200 (13 strains), and O86a:H27/CG3570 (11 strains) in phylogroup B1 are the historical EAEC clones in Japan, and they exhibited strong biofilm formation. Twenty-nine strains of EAEC O25:H4/CG131 were identified in phylogroup B2, 79% of which produced CTX-M-14. This clone has emerged since 2003. The clone harbored plasmid-encoded EAEC virulence genes but not chromosomal virulence genes and had lower biofilm-forming capacity than historical EAEC strains. This clone most likely emerged from a pandemic uropathogenic O25:H4/sequence type 131 clone by acquiring an EAEC virulence plasmid from canonical EAEC. Surveillance of the horizontal transfer of both virulence and ESBL genes among E. coli strains is important for preventing a worldwide increase in antimicrobial drug resistance.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli/classificação , Escherichia coli/enzimologia , Genótipo , Tipagem de Sequências Multilocus , Filogenia , beta-Lactamases/metabolismo , Biofilmes/crescimento & desenvolvimento , Criança , Pré-Escolar , Diarreia/microbiologia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Fezes/microbiologia , Humanos , Japão , Plasmídeos , Fatores de Virulência/genética
10.
Int J Med Microbiol ; 306(3): 152-64, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27083266

RESUMO

Enteropathogenic Escherichia coli (EPEC) induce attaching and effacing (A/E) lesions in enterocytes and produce the bundle-forming pilus (BFP) contributing to the localized adherence (LA) pattern formation on HeLa cells. Enteroaggregative E. coli (EAEC) produce aggregative adherence (AA) on HeLa cells and form prominent biofilms. The ability to produce LA or AA is an important hallmark to classify fecal E. coli isolates as EPEC or EAEC, respectively. E. coli strains of serotype O119:H6 exhibit an LA+ phenotype and have been considered as comprising a clonal group of EPEC strains. However, we have recently identified O119:H6 EPEC strains that produce LA and an AA-like pattern concurrently (LA/AA-like+). In this study, we evaluated the relatedness of three LA/AA-like+ and three LA+ O119:H6 strains by comparing their virulence and genotypic properties. We first found that the LA/AA-like+ strains induced actin accumulation in HeLa cells (indicative of A/E lesions formation) and formed biofilms on abiotic surfaces more efficiently than the LA+ strains. MLST analysis showed that the six strains all belong to the ST28 complex. All strains carried multiple plasmids, but as plasmid profiles were highly variable, this cannot be used to differentiate LA/AA-like+ and LA+ strains. We further obtained their draft genome sequences and the complete sequences of four plasmids harbored by one LA/AA-like+ strain. Analysis of these sequences and comparison with 37 fully sequenced E. coli genomes revealed that both O119:H6 groups belong to the E. coli phylogroup B2 and are very closely related with only 58-67 SNPs found between LA/AA-like+ and LA+ strains. Search of the draft sequences of the six strains for adhesion-related genes known in EAEC and other E. coli pathotypes detected no genes specifically present in LA/AA-like+ strains. Unexpectedly however, we found that a large plasmid distinct from pEAF is responsible for the AA-like phenotype of the LA/AA-like+ strains. Although we have not identified any plasmid genes specifically present in all LA/AA-like+ strains and absent in the LA+ strains, these results suggest the presence of an unknown mechanism to promote the AA-like pattern production and biofilm formation by the LA/AA-like+ strains. Because their ability to produce A/E lesions and biofilm concomitantly could exacerbate the clinical condition of the patient and lead to persistent diarrhea, the mechanism underlying the enhanced biofilm formation by the LA/AA-like+ O119:H6 strains and their spread and involvement in severe diarrheal diseases should be more intensively investigated.


Assuntos
Adesinas de Escherichia coli/metabolismo , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/patogenicidade , Virulência , Adesinas de Escherichia coli/genética , Biofilmes , DNA Bacteriano/genética , Escherichia coli Enteropatogênica/classificação , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fezes/microbiologia , Genes Bacterianos , Células HeLa , Humanos , Tipagem de Sequências Multilocus , Filogenia , Plasmídeos/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Sorogrupo
11.
Appl Environ Microbiol ; 80(4): 1394-402, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24334665

RESUMO

Insertion sequences (ISs) are the simplest transposable elements and are widely distributed in bacteria; however, they also play important roles in genome evolution. We recently identified a protein called IS excision enhancer (IEE) in enterohemorrhagic Escherichia coli (EHEC) O157. IEE promotes the excision of IS elements belonging to the IS3 family, such as IS629, as well as several other families. IEE-mediated IS excision generates various genomic deletions that lead to the diversification of the bacterial genome. IEE has been found in a broad range of bacterial species; however, among sequenced E. coli strains, IEE is primarily found in EHEC isolates. In this study, we investigated non-EHEC pathogenic E. coli strains isolated from domestic animals and found that IEE is distributed in specific lineages of enterotoxigenic E. coli (ETEC) strains of serotypes O139 or O149 isolated from swine. The iee gene is located within integrative elements that are similar to SpLE1 of EHEC O157. All iee-positive ETEC lineages also contained multiple copies of IS629, a preferred substrate of IEE, and their genomic locations varied significantly between strains, as observed in O157. These data suggest that IEE may have been transferred among EHEC and ETEC in swine via SpLE1 or SpLE1-like integrative elements. In addition, IS629 is actively moving in the ETEC O139 and O149 genomes and, as in EHEC O157, is promoting the diversification of these genomes in combination with IEE.


Assuntos
Elementos de DNA Transponíveis , Escherichia coli Enterotoxigênica/genética , Escherichia coli Enterotoxigênica/isolamento & purificação , Proteínas de Escherichia coli/genética , Animais , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Escherichia coli Enterotoxigênica/classificação , Genótipo , Dados de Sequência Molecular , Análise de Sequência de DNA , Sorotipagem , Suínos
12.
BMC Microbiol ; 14: 97, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24742173

RESUMO

BACKGROUND: Cytolethal distending toxin (CDT)-producing Escherichia coli (CTEC) has been isolated from patients with gastrointestinal or urinary tract infection, and sepsis. However, the source of human infection remains unknown. In this study, we attempted to detect and isolate CTEC strains from fecal specimens of healthy farm animals and characterized them phenotypically and genotypically. RESULTS: By PCR analysis, the cdtB gene was detected in 90 and 14 out of 102 and 45 stool specimens of healthy cattle and swine, respectively, and none from 45 chicken samples. Subtypes of the cdtB genes (I to V) were further examined by restriction fragment length polymorphism analysis of the amplicons and by type-specific PCRs for the cdt-III and cdt-V genes. Of the 90 cdtB gene-positive cattle samples, 2 cdt-I, 25 cdt-III, 1 cdt-IV, 52 cdt-V and 1 both cdt-III and cdt-V gene-positive strains were isolated while 1 cdt-II and 6 cdt-V gene-positive were isolated from 14 cdtB positive swine samples. Serotypes of some isolates were identical to those of human isolates. Interestingly, a cdt-II gene-positive strain isolated from swine was for the first time identified as Escherichia albertii. Phylogenetic analysis grouped 87 E. coli strains into 77 phylogroup B1, 6 B2, and 4 D, respectively. Most of the B1 strains harbored both lpfAO113 and ehaA. Three and twenty-two cdt-V gene-positive strains harbored eaeA and stx genes, respectively, and seven possessed cdt-V, stx and subAB genes. The cnf2 gene, normally present in cdt-III gene-positive strains, was also detected in cdt-V gene-positive strains. CONCLUSIONS: Our results suggest that healthy cattle and swine could be the reservoir of CTEC, and they could be a potential source of human infections.


Assuntos
Toxinas Bacterianas/genética , Escherichia coli/genética , Fezes/microbiologia , Animais , Bovinos , Galinhas , DNA Bacteriano/química , DNA Bacteriano/genética , Escherichia coli/isolamento & purificação , Japão , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA , Suínos
14.
Open Forum Infect Dis ; 10(1): ofac695, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36686639

RESUMO

Background: Salmonella enterica subspecies enterica serovar Oranienburg (SO) is a foodborne pathogen but rarely causes systemic infections such as bacteremia. Between July and September 2018, bacteremia cases caused by SO were identified in 12 persons without any underlying medical conditions in the southern Kyushu area of Japan. Methods: Randomly amplified polymorphic DNA (RAPD) analysis was performed to investigate the genetic similarity of the 12 bacteremia-related strains and other Japanese isolates. Furthermore, a series of whole-genome sequence (WGS)-based phylogenetic analyses was performed with a global SO strain set (n = 1648). Results: The resolution power of RAPD was insufficient to investigate the genetic similarity between the bacteremia-related strains and other strains. WGS-based phylogenetic analyses revealed that the bacteremia-related strains formed a tight cluster along with 2 strains isolated from asymptomatic carriers in 2018 in the same area, with a maximum within-cluster single-nucleotide polymorphism (SNP) distance of 11. While several strains isolated in the United States and the United Kingdom were found to be closely related to the bacteremia-related strains, 2 strains isolated in 2016 in the southern Kyushu area were most closely related, with SNP distances of 4-11 and 5-10, and had the same plasmids as the bacteremia-related strains. Conclusions: The 12 bacteremia cases identified were caused by a single SO clone. As none of the bacteremia patients had any underlying diseases, this clone may be prone to cause bacteremia. Although further analyses are required to understand its virulence, particular attention should be given to this clone and its close relatives in the surveillance of nontyphoidal salmonellae.

15.
Microb Genom ; 9(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36951916

RESUMO

Among Shiga toxin (Stx)-producing Escherichia coli (STEC) strains of various serotypes, O157:H7 and five major non-O157 STEC (O26:H11, O111:H8, O103:H2, O121:H19 and O145:H28) can be selectively isolated by using tellurite-containing media. While human infections by O165:H25 STEC strains have been reported worldwide, their detection and isolation are not easy, as they are not resistant to tellurite. Systematic whole-genome sequencing (WGS) analyses have not yet been conducted. Here, we defined O165:H25 strains and their close relatives, including O172:H25 strains, as clonal complex 119 (CC119) and performed a global WGS analysis of the major lineage of CC119, called CC119 sensu stricto (CC119ss), by using 202 CC119ss strains, including 90 strains sequenced in this study. Detailed comparisons of 13 closed genomes, including 7 obtained in this study, and systematic analyses of Stx phage genomes in 50 strains covering the entire CC119ss lineage, were also conducted. These analyses revealed that the Stx2a phage, the locus of enterocyte effacement (LEE) encoding a type III secretion system (T3SS), many prophages encoding T3SS effectors, and the virulence plasmid were acquired by the common ancestor of CC119ss and have been stably maintained in this lineage, while unusual exchanges of Stx1a and Stx2c phages were found at a single integration site. Although the genome sequences of Stx2a phages were highly conserved, CC119ss strains exhibited notable variation in Stx2 production levels. Further analyses revealed the lack of SpLE1-like elements carrying the tellurite resistance genes in CC119ss and defects in rhamnose, sucrose, salicin and dulcitol fermentation. The genetic backgrounds underlying these defects were also clarified.


Assuntos
Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Humanos , Escherichia coli Shiga Toxigênica/genética , Toxina Shiga/genética , Fermentação , Proteínas de Escherichia coli/genética , Genômica , Carboidratos
16.
Emerg Infect Dis ; 18(3): 488-92, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22377117

RESUMO

Discriminating Escherichia albertii from other Enterobacteriaceae is difficult. Systematic analyses showed that E. albertii represents a substantial portion of strains currently identified as eae-positive Escherichia coli and includes Shiga toxin 2f-producing strains. Because E. albertii possesses the eae gene, many strains might have been misidentified as enterohemorrhagic or enteropathogenic E. coli.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia/classificação , Adesinas Bacterianas/genética , Animais , Toxinas Bacterianas/genética , Aves/microbiologia , Gatos , Escherichia/genética , Escherichia/isolamento & purificação , Escherichia coli/classificação , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/diagnóstico , Proteínas de Escherichia coli/genética , Humanos , Tipagem de Sequências Multilocus , Fenótipo , Filogenia , Toxinas Shiga/genética
17.
Gastroenterology ; 141(5): 1773-81, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21839040

RESUMO

BACKGROUND & AIMS: Alterations in the gastrointestinal microbiota have been associated with metabolic diseases. However, little is known about host factors that induce changes in gastrointestinal bacterial populations. We investigated the role of bile acids in this process because of their strong antimicrobial activities, specifically the effects of cholic acid administration on the composition of the gut microbiota in a rat model. METHODS: Rats were fed diets supplemented with different concentrations of cholic acid for 10 days. We used 16S ribosomal RNA gene clone library sequencing and fluorescence in situ hybridization to characterize the composition of the cecal microbiota of the different diet groups. Bile acids in feces, organic acids in cecal contents, and some blood parameters were also analyzed. RESULTS: Administration of cholic acid induced phylum-level alterations in the composition of the gut microbiota; Firmicutes predominated at the expense of Bacteroidetes. Cholic acid feeding simplified the composition of the microbiota, with outgrowth of several bacteria in the classes Clostridia and Erysipelotrichi. Externally administered cholic acid was efficiently transformed into deoxycholic acid by a bacterial 7α-dehydroxylation reaction. Serum levels of adiponectin decreased significantly in rats given the cholic acid diet. CONCLUSIONS: Cholic acid regulates the composition of gut microbiota in rats, inducing similar changes to those induced by high-fat diets. These findings improve our understanding of the relationship between metabolic diseases and the composition of the gastrointestinal microbiota.


Assuntos
Ácidos e Sais Biliares/metabolismo , Ceco/microbiologia , Metagenoma/fisiologia , Adiponectina/sangue , Animais , Ácidos e Sais Biliares/análise , Ácido Cólico/farmacologia , Clostridium/efeitos dos fármacos , Clostridium/genética , Clostridium/isolamento & purificação , Relação Dose-Resposta a Droga , Erysipelothrix/efeitos dos fármacos , Erysipelothrix/genética , Erysipelothrix/isolamento & purificação , Fezes/química , Fezes/microbiologia , Masculino , Metagenoma/efeitos dos fármacos , Metagenoma/genética , Modelos Animais , Dados de Sequência Molecular , RNA Ribossômico 16S , Ratos , Ratos Endogâmicos
18.
Microbiology (Reading) ; 158(Pt 3): 746-758, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22194351

RESUMO

Among three haemolysins identified thus far in Escherichia coli, alpha-haemolysin (HlyA) is encoded on the pathogenicity islands of extraintestinal pathogenic strains, while enterohaemolysin (EhxA) is encoded on the virulence plasmids of enterohaemorrhagic E. coli (EHEC) strains. In contrast, the gene for haemolysin E (HlyE) is located on the E. coli chromosome backbone and is therefore widely distributed among E. coli strains. However, because hlyE gene expression is repressed by the H-NS protein and because the gene has been disrupted in many strains, its haemolytic activity cannot be detected in wild-type strains by routine screening on blood agar plates. In this study, we found that the HlyE-derived haemolytic activity of enteropathogenic E. coli (EPEC) O55 : H7 can be detected after anaerobic cultivation on a washed blood agar plate (EHX plate) that is used to detect the production of EhxA. We also found that the haemolytic activity of EHEC O157 : H7 observed on EHX plates under aerobic and anaerobic growth conditions is derived from EhxA and HlyE, respectively; this differential expression of the two haemolysins occurs at the transcriptional level. Our analysis of 60 E. coli strains of various pathotypes and phylogenies for their repertoires of haemolysin genes, haemolytic phenotypes and hlyE gene sequences revealed that HlyE activity can generally be detected on EHX plates under anaerobic growth conditions if the gene is intact. Furthermore, our results indicate that hlyE gene inactivation occurred in three of the five E. coli lineages (phylogroups A, B1 and B2), which demonstrates phylogroup-specific gene disruption patterns.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Proteínas Hemolisinas/metabolismo , Hemólise , Aerobiose , Anaerobiose , Meios de Cultura/química , DNA Bacteriano/química , DNA Bacteriano/genética , Proteínas de Escherichia coli/genética , Proteínas Hemolisinas/genética , Dados de Sequência Molecular , Análise de Sequência de DNA
19.
Genome Res ; 19(10): 1809-16, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19564451

RESUMO

Mobile genetic elements play important roles in the evolution and diversification of bacterial genomes. In enterohemorrhagic Escherichia coli O157, a major factor that affects genomic diversity is prophages, which generate most of the large-size structural polymorphisms (LSSPs) observed in O157 genomes. Here, we describe the results of a systematic analysis of numerous small-size structural polymorphisms (SSSPs) that were detected by comparing the genomes of eight clinical isolates with a sequenced strain, O157 Sakai. Most of the SSSPs were generated by genetic events associated with only two insertion sequence (IS) elements, IS629 and ISEc8, and a number of genes that were inactivated or deleted by these events were identified. Simple excisions of IS629 and small deletions (footprints) formed by the excision of IS629, both of which are rarely described in bacteria, were also detected. In addition, the distribution of IS elements was highly biased toward prophages, prophage-like integrative elements, and plasmids. Based on these and our previous results, we conclude that, in addition to prophages, these two IS elements are major contributors to the genomic diversification of O157 strains and that LSSPs have been generated mainly by bacteriophages and SSSPs by IS elements. We also suggest that IS elements possibly play a role in the inactivation and immobilization of incoming phages and plasmids. Taken together, our results reveal the true impact of IS elements on the diversification of bacterial genomes and highlight their novel role in genome evolution.


Assuntos
Elementos de DNA Transponíveis/fisiologia , Escherichia coli O157/genética , Especiação Genética , Genoma Bacteriano , Polimorfismo Genético/fisiologia , Algoritmos , Sequência de Bases , Mapeamento Cromossômico/métodos , Biologia Computacional , Elementos de DNA Transponíveis/genética , Previsões , Genoma Bacteriano/genética , Dados de Sequência Molecular , Mutagênese Insercional/genética , Mutagênese Insercional/fisiologia , Análise de Sequência de DNA/métodos
20.
PLoS Pathog ; 6(12): e1001231, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21187904

RESUMO

The NF-κB signaling pathway is central to the innate and adaptive immune responses. Upon their detection of pathogen-associated molecular patterns, Toll-like receptors on the cell surface initiate signal transduction and activate the NF-κB pathway, leading to the production of a wide array of inflammatory cytokines, in attempt to eradicate the invaders. As a countermeasure, pathogens have evolved ways to subvert and manipulate this system to their advantage. Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) are closely related bacteria responsible for major food-borne diseases worldwide. Via a needle-like protein complex called the type three secretion system (T3SS), these pathogens deliver virulence factors directly to host cells and modify cellular functions, including by suppressing the inflammatory response. Using gain- and loss-of-function screenings, we identified two bacterial effectors, NleC and NleE, that down-regulate the NF-κB signal upon being injected into a host cell via the T3SS. A recent report showed that NleE inhibits NF-κB activation, although an NleE-deficient pathogen was still immune-suppressive, indicating that other anti-inflammatory effectors are involved. In agreement, our present results showed that NleC was also required to inhibit inflammation. We found that NleC is a zinc protease that disrupts NF-κB activation by the direct cleavage of NF-κB's p65 subunit in the cytoplasm, thereby decreasing the available p65 and reducing the total nuclear entry of active p65. More importantly, we showed that a mutant EPEC/EHEC lacking both NleC and NleE (ΔnleC ΔnleE) caused greater inflammatory response than bacteria carrying ΔnleC or ΔnleE alone. This effect was similar to that of a T3SS-defective mutant. In conclusion, we found that NleC is an anti-inflammatory bacterial zinc protease, and that the cooperative function of NleE and NleC disrupts the NF-κB pathway and accounts for most of the immune suppression caused by EHEC/EPEC.


Assuntos
Escherichia coli Êntero-Hemorrágica/patogenicidade , Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/fisiologia , Evasão da Resposta Imune , NF-kappa B/antagonistas & inibidores , Fator de Transcrição RelA/antagonistas & inibidores , NF-kappa B/metabolismo , Peptídeo Hidrolases , Fatores de Virulência/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA