Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 446(7131): 56-9, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17330038

RESUMO

Graphene--a recently discovered form of graphite only one atomic layer thick--constitutes a new model system in condensed matter physics, because it is the first material in which charge carriers behave as massless chiral relativistic particles. The anomalous quantization of the Hall conductance, which is now understood theoretically, is one of the experimental signatures of the peculiar transport properties of relativistic electrons in graphene. Other unusual phenomena, like the finite conductivity of order 4e(2)/h (where e is the electron charge and h is Planck's constant) at the charge neutrality (or Dirac) point, have come as a surprise and remain to be explained. Here we experimentally study the Josephson effect in mesoscopic junctions consisting of a graphene layer contacted by two closely spaced superconducting electrodes. The charge density in the graphene layer can be controlled by means of a gate electrode. We observe a supercurrent that, depending on the gate voltage, is carried by either electrons in the conduction band or by holes in the valence band. More importantly, we find that not only the normal state conductance of graphene is finite, but also a finite supercurrent can flow at zero charge density. Our observations shed light on the special role of time reversal symmetry in graphene, and demonstrate phase coherent electronic transport at the Dirac point.

2.
Phys Rev Lett ; 109(18): 186806, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23215314

RESUMO

A strained and undoped HgTe layer is a three-dimensional topological insulator, in which electronic transport occurs dominantly through its surface states. In this Letter, we present transport measurements on HgTe-based Josephson junctions with Nb as a superconductor. Although the Nb-HgTe interfaces have a low transparency, we observe a strong zero-bias anomaly in the differential resistance measurements. This anomaly originates from proximity-induced superconductivity in the HgTe surface states. In the most transparent junction, we observe periodic oscillations of the differential resistance as a function of an applied magnetic field, which correspond to a Fraunhofer-like pattern. This unambiguously shows that a precursor of the Josephson effect occurs in the topological surface states of HgTe.

3.
Nano Lett ; 10(5): 1563-7, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20373788

RESUMO

We report an experimental study of 1/f noise in liquid-gated graphene transistors. We show that the gate dependence of the noise is well described by a charge-noise model, whereas Hooge's empirical relation fails to describe the data. At low carrier density, the noise can be attributed to fluctuating charges in close proximity to the graphene, while at high carrier density it is consistent with noise due to scattering in the channel. The charge noise power scales inversely with the device area, and bilayer devices exhibit lower noise than single-layer devices. In air, the observed noise is also consistent with the charge-noise model.


Assuntos
Grafite/química , Modelos Teóricos , Nanotecnologia/instrumentação , Transistores Eletrônicos , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento
4.
Nat Mater ; 7(2): 151-7, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18059274

RESUMO

The potential of graphene-based materials consisting of one or a few layers of graphite for integrated electronics originates from the large room-temperature carrier mobility in these systems (approximately 10,000 cm2 V(-1) s(-1)). However, the realization of electronic devices such as field-effect transistors will require controlling and even switching off the electrical conductivity by means of gate electrodes, which is made difficult by the absence of a bandgap in the intrinsic material. Here, we demonstrate the controlled induction of an insulating state--with large suppression of the conductivity--in bilayer graphene, by using a double-gate device configuration that enables an electric field to be applied perpendicular to the plane. The dependence of the resistance on temperature and electric field, and the absence of any effect in a single-layer device, strongly suggest that the gate-induced insulating state originates from the recently predicted opening of a bandgap between valence and conduction bands.

5.
Nat Commun ; 2: 575, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22146394

RESUMO

Three-dimensional topological insulators are characterized by the presence of a bandgap in their bulk and gapless Dirac fermions at their surfaces. New physical phenomena originating from the presence of the Dirac fermions are predicted to occur, and to be experimentally accessible via transport measurements in suitably designed electronic devices. Here we study transport through superconducting junctions fabricated on thin Bi(2)Se(3) single crystals, equipped with a gate electrode. In the presence of perpendicular magnetic field B, sweeping the gate voltage enables us to observe the filling of the Dirac fermion Landau levels, whose character evolves continuously from electron- to hole-like. When B=0, a supercurrent appears, whose magnitude can be gate tuned, and is minimum at the charge neutrality point determined from the Landau level filling. Our results demonstrate how gated nano-electronic devices give control over normal and superconducting transport of Dirac fermions at an individual surface of a three-dimensional topological insulators.


Assuntos
Bismuto/química , Eletrônica/métodos , Engenharia/métodos , Nanotecnologia/métodos , Selênio/química , Semicondutores , Cristalização , Eletrodos , Elétrons , Grafite/química , Campos Magnéticos , Nanoestruturas/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA