Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int Orthop ; 45(4): 1097-1107, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33052447

RESUMO

PURPOSE: We have recently developed an autologous bone graft substitute (ABGS) containing recombinant human bone morphogenetic protein 6 (rhBMP6) in autologous blood coagulum (ABC) that induces new bone formation in vivo. In order to improve biomechanical properties of the implant, compression resistant matrix (CRM) consisting of synthetic ceramics in the form of macroporous cylinders was added to the ABGS and we evaluated the biomechanical properties and the quantity and quality of bone formation following subcutaneous implantation in rats. METHODS: ABGS implants containing rhBMP6 in ABC with cylindrical ceramic blocks were implanted subcutaneously (n = 6 per time point) in the axillary region of Sprague-Dawley rats and removed at specified time points (7, 14, 21, 35, and 50 days). The quantity and quality of newly formed bone were analyzed by microCT, histology, and histomorphometric analyses. Biomechanical properties of ABGS formulations were determined by employing the cut test. RESULTS: MicroCT analyses revealed that ABGS implants induced formation of new bone within ceramic blocks. Histological analysis revealed that on day seven following implantation, the endochondral ossification occupied the peripheral part of implants. On days 14 and 21, newly formed bone was present both around the ceramic block and through the pores inside the block. On both days 35 and 50, cortical bone encircled the ceramic block while inside the block, bone covered the ceramic surface surrounding the pores. Within the osseous circles, there were few trabeculae and bone marrow containing adipocytes. ABGS containing cylindrical ceramic blocks were more rigid and had significantly increased stiffness compared with implants containing ceramic particles as CRM. CONCLUSION: We demonstrated that macroporous ceramic blocks in a form of cylinders are promising CRMs with good handling and enhanced biomechanical properties, supporting bone formation with ABGS containing rhBMP6 within autologous blood coagulum. Hence, ABGS containing ceramic blocks should be tested in preclinical models including diaphyseal segmental defects and non-unions in larger animals.


Assuntos
Proteína Morfogenética Óssea 6 , Substitutos Ósseos , Animais , Cerâmica , Humanos , Osteogênese , Ratos , Ratos Sprague-Dawley
2.
Int Orthop ; 39(1): 161-72, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25300398

RESUMO

PURPOSE: Iron overload accelerates bone loss in mice lacking the bone morphogenetic protein 6 (Bmp6) gene, which is the key endogenous regulator of hepcidin, iron homeostasis gene. We investigated involvement of other BMPs in preventing haemochromatosis and subsequent osteopenia in Bmp6-/- mice. METHODS: Iron-treated wild-type (WT) and Bmp6-/- mice were analysed for hepcidin messenger RNA (mRNA) and tissue and blood BMP levels by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR), immunohistochemistry, Western blot, enzyme-linked immunosorbent assay (ELISA) and proximity extension assay. BMPs labeled with technetium-99m were used in pharmacokinetic studies. RESULTS: In WT mice, 4 h following iron challenge, liver Bmp6 and hepcidin expression were increased, while expression of other Bmps was not affected. In parallel, we provided the first evidence that BMP6 circulates in WT mice and that iron increased the BMP6 serum level and the specific liver uptake of (99m)Tc-BMP6. In Bmp6-/- mice, iron challenge led to blunted activation of liver Smad signaling and hepcidin expression with a delay of 24 h, associated with increased Bmp5 and Bmp7 expression and increased Bmp2, 4, 5 and 9 expression in the duodenum. Liver Bmp7 expression and increased circulating BMP9 eventually contributed to the late hepcidin response. This was further supported by exogenous BMP7 therapy resulting in an effective hepcidin expression followed by a rapid normalisation of plasma iron values and restored osteopenia in Bmp6-/- mice. CONCLUSION: In Bmp6-/- mice, iron activated endogenous compensatory mechanisms of other BMPs that were not sufficient for preventing hemochromatosis and bone loss. Administration of exogenous BMP7 was effective in correcting the plasma iron level and bone loss, indicating that BMP6 is an essential but not exclusive in vivo regulator of iron homeostasis.


Assuntos
Doenças Ósseas Metabólicas/tratamento farmacológico , Proteínas Morfogenéticas Ósseas/metabolismo , Sobrecarga de Ferro/tratamento farmacológico , Animais , Western Blotting , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/farmacologia , Ensaio de Imunoadsorção Enzimática , Feminino , Hepcidinas/metabolismo , Homeostase/fisiologia , Imuno-Histoquímica , Ferro/metabolismo , Fígado/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
3.
Int Orthop ; 38(3): 635-47, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24352822

RESUMO

PURPOSE: The purpose of this study was to revise the clinical use of commercial BMP2 (Infuse) and BMP7 (Osigraft) based bone devices and explore the mechanism of action and efficacy of low BMP6 doses in a novel whole blood biocompatible device OSTEOGROW. METHODS: Complications from the clinical use of BMP2 and BMP7 have been systemically reviewed in light of their role in bone remodeling. BMP6 function has been assessed in Bmp6-/- mice by µCT and skeletal histology, and has also been examined in mesenchymal stem cells (MSC), hematopoietic stem cells (HSC) and osteoclasts. Safety and efficacy of OSTEOGROW have been assessed in rats and rabbits. RESULTS: Clinical use issues of BMP2 and BMP7 have been ascribed to the limited understanding of their role in bone remodeling at the time of device development for clinical trials. BMP2 and BMP7 in bone devices significantly promote bone resorption leading to osteolysis at the endosteal surfaces, while in parallel stimulating exuberant bone formation in surrounding tissues. Unbound BMP2 and BMP7 in bone devices precipitate on the bovine collagen and cause inflammation and swelling. OSTEOGROW required small amounts of BMP6, applied in a biocompatible blood coagulum carrier, for stimulating differentiation of MSCs and accelerated healing of critical size bone defects in animals, without bone resorption and inflammation. BMP6 decreased the number of osteoclasts derived from HSC, while BMP2 and BMP7 increased their number. CONCLUSIONS: Current issues and challenges with commercial bone devices may be resolved by using novel BMP6 biocompatible device OSTEOGROW, which will be clinically tested in metaphyseal bone fractures, compartments where BMP2 and BMP7 have not been effective.


Assuntos
Proteína Morfogenética Óssea 6/farmacologia , Proteína Morfogenética Óssea 6/uso terapêutico , Sistemas de Liberação de Medicamentos , Fraturas Ósseas/tratamento farmacológico , Osteogênese/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/uso terapêutico , Proteína Morfogenética Óssea 6/administração & dosagem , Proteína Morfogenética Óssea 7/farmacologia , Proteína Morfogenética Óssea 7/uso terapêutico , Relação Dose-Resposta a Droga , Fraturas Ósseas/fisiopatologia , Camundongos , Camundongos Knockout , Modelos Animais , Osteogênese/fisiologia , Coelhos , Ratos , Cicatrização/fisiologia
4.
Bone Rep ; 14: 100759, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33732816

RESUMO

BACKGROUND: Management of large segmental defects is one of the most challenging issues in bone repair biology. Autologous bone graft substitute (ABGS) containing rhBMP6 within autologous blood coagulum (ABC) with synthetic ceramics is a novel biocompatible therapeutic solution for bone regeneration. CASE PRESENTATION: A 2-year old dog was brought to the veterinary clinics due to pain and bleeding from the right front leg after being unintendedly hit by a gunshot. Radiological examination revealed a large, 3 cm long multisegmental defect of the humerus on the right front leg with a loss of anatomical structure in the distal portion of the bone. The defect was treated surgically and an external fixator was inserted to ensure immobilization. Complete lack of bone formation 3 months following surgery required a full reconstruction of the defect site with a novel ABGS (rhBMP6 in ABC with ceramic particles) to avoid front leg amputation. The healing was then followed for the next 16 months. The callus formation was observed on x-ray images 2 months following ABGS implantation. The bone segments progressively fused together leading to the defect rebridgment allowing removal of the external fixator by 4 months after the reconstruction surgery. At the end of the observation period, the function of the leg was almost fully restored while analyses of the humeral CT sections revealed restoration and cortices rebridgment with a renewal of uniform medullary canal including structural reconstruction of the distal humerus. CONCLUSION: This large humeral gunshot segmental defect of the front leg in a dog was saved from amputation via inducing bone regeneration using a novel ABGS osteoinductive device containing BMP6 in ABC.

5.
Bone ; 141: 115654, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32977068

RESUMO

Bone morphogenetic proteins (BMPs) are potent osteoinductive agents for bone tissue engineering. In order to define optimal properties of a novel autologous bone graft substitute (ABGS) containing rhBMP6 within the autologous blood coagulum (ABC) and ceramic particles as a compression resistant matrix (CRM), we explored the influence of their amount, chemical composition and particle size on the quantity and quality of bone formation in the rat subcutaneous assay. Tested ceramic particles included tricalcium phosphate (TCP), hydroxyapatite (HA) and biphasic calcium phosphate ceramic (BCP), containing TCP and HA in 80/20 ratio of different particle sizes (small 74-420 µm, medium 500-1700 µm and large 1000-4000 µm). RhBMP6 was either mixed with ABC or lyophilized on CRM prior to use with ABC. The experiments were terminated on day 21 and implants were analysed by microCT, histology and histomorphometry. Addition of CRM to ABGS containing rhBMP6 in ABC significantly increased the amount of newly formed bone and the optimal CRM/ABC ratio was found to be around 100 mg/500 µL. MicroCT analyses revealed that all tested ABGS formulations induced an extensive new bone formation and there were no differences between the two methods of rhBMP6 application as determined by the bone volume. However, the particle size played a significant role in the quantity and quality of newly formed bone. ABGS containing small particles induced new bone forming a dense trabecular network, cortical bone at the rim, bone and bone marrow in apposition to and in between ceramic particles. ABGS containing medium and large particles also resulted in new bone on the surface of particles as well as inside the pores. Histomorphometric analysis revealed that the ceramics particle size correlated with the quality of trabecular pattern of newly formed bone, bone/bone marrow ratio as observed in apposition and between particles, and the ratio between the cortical and trabecular bone. By employing rat subcutaneous implant assay, we showed for the first time that the size of synthetic ceramics particles affected the osteogenesis as defined by both the quantity and quality of ectopic bone.


Assuntos
Substitutos Ósseos , Animais , Substitutos Ósseos/farmacologia , Osso e Ossos , Fosfatos de Cálcio , Cerâmica/farmacologia , Osteogênese , Tamanho da Partícula , Ratos
6.
Bone ; 138: 115511, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32599225

RESUMO

Regenerative cell-based implants using periosteum-derived stem cells were developed for the treatment of large 3 cm fresh and 4.5 centimeter biological compromised bone gaps in a tibial sheep model and compared with an acellular ceramic-collagen void filler. It was hypothesized that the latter is insufficient to heal large skeletal defects due to reduced endogenous biological potency. To this purpose a comparison was made between the ceramic dicalciumphosphate scaffold (CopiOs®) as such, the same ceramic coated with clinical grade Bone Morphogenetic Protein 2 and 6 (BMP) only or a BMP coated cell-seeded combination product. These implants were evaluated in 2 sheep models, a fresh 3 cm critical size tibial defect and a 4.5 cm biologically exhausted tibial defect. For the groups in which growth factors were applied, BMP-6 was chosen at a dose of 344 µg for 3 cm and 1.500 µg or 3.800 µg for 4.5 cm defects. An additional group in the 4.5 cm defect was tested using BMP-2 in a dose of 1.500 µg. For all the cell based implants autologous periosteum-derived cells were used which were cultured in monolayer during 6 weeks. For the fresh defect 408 million cells and for the biologically exhausted tibial defect 612 million cells were drop-seeded on the BMP coated scaffolds. Bone healing was studied during 16 weeks postimplantation, using standard radiographs. While fresh defects responded to all treatments, regardless the use of cells, the biologically hampered defects responded in half of the cases and only if the BMP-cell combination product was used, supporting the concept that cell-based therapies may become attractive in treating defects with a compromised biological status.


Assuntos
Proteína Morfogenética Óssea 2 , Periósteo , Animais , Regeneração Óssea , Ovinos , Células-Tronco , Alicerces Teciduais
7.
Bone ; 140: 115544, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32730919

RESUMO

Posterolateral lumbar fusion (PLF) is a commonly performed surgical procedure for the treatment of pathological conditions of the lumbosacral spine. In the present study, we evaluated an autologous bone graft substitute (ABGS) containing rhBMP6 in autologous blood coagulum (ABC) and synthetic ceramics used as compression resistant matrix (CRM) in the rabbit PLF model. In the pilot PLF rabbit experiment, we tested four different CRMs (BCP 500-1700 µm, BCP 1700-2500 µm and two different TCP in the form of slabs) which were selected based on achieving uniform ABC distribution. Next, ABGS implants composed of 2.5 mL ABC with 0.5 g ceramic particles (TCP or BCP (TCP/HA 80/20) of particle size 500-1700 µm) and 125 µg rhBMP6 (added to blood or lyophilized on ceramics) were placed bilaterally between transverse processes of the lumbar vertebrae (L5-L6) following exposition and decortication in 12 New Zealand White Rabbits observed for 7 weeks following surgery. Spinal fusion outcome was analysed by µCT, palpatory segmental mobility testing and selected specimens were either tested biomechanically (three-point bending test) and/or processed histologically. The total fusion success rate was 90.9% by both µCT analyses and by palpatory segmental mobility testing. The volume of newly formed bone between experimental groups with TCP or BCP ceramics and the different method of rhBMP6 application was comparable. The newly formed bone and ceramic particles integrated with the transverse processes on histological sections resulting in superior biomechanical properties. The results were retrospectively found superior to allograft devitalized mineralized bone as a CRM as reported previously in rabbit PLF. Overall, this novel ABGS containing rhBMP6, ABC and the specific 500-1700 µm synthetic ceramic particles supported new bone formation for the first time and successfully promoted posterolateral lumbar fusion in rabbits.


Assuntos
Osteogênese , Fusão Vertebral , Animais , Proteína Morfogenética Óssea 2 , Proteína Morfogenética Óssea 6 , Transplante Ósseo , Cerâmica/farmacologia , Humanos , Vértebras Lombares/cirurgia , Coelhos , Estudos Retrospectivos
8.
Bone ; 140: 115551, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32730930

RESUMO

Bone morphogenetic proteins (BMPs) are known to induce new bone formation in vivo but treating trabecular bone defects with a BMP based therapeutic remains controversial. Here, we evaluated the safety and efficacy of a novel Autologous Bone Graft Substitute (ABGS) comprised of recombinant human BMP6 (rhBMP6) dispersed within an autologous blood coagulum (ABC) as a physiological natural carrier in patients with a closed distal radial fracture (DRF). We enrolled 32 patients in a randomized, standard of care (SoC) and placebo (PBO) controlled, double-blinded Phase I First in Human (FiH) clinical trial. ABGS was prepared from peripheral blood as 250 µg rhBMP6/mL ABC or PBO (1 mL ABC containing excipients only) and was administered dorsally via a syringe injection into the fracture site following closed fracture fixation with 3 Kirschner wires. Patients carried an immobilization for 5 weeks and were followed-up for 0 to 26 weeks by clinical examination, safety, serial radiographic analyses and CT. During the 13 weeks follow-up and at 26 weeks post study there were no serious adverse reactions recorded. The results showed that there were no detectable anti-rhBMP6 antibodies in the blood of any of the 32 patients at 13- and 26-weeks following treatment. Pharmacokinetic analyses of plasma from patients treated with ABGS showed no detectable rhBMP6 at any time point within the first 24 h following administration. The CT image and radiographic analyses score from patients treated with AGBS showed significantly accelerated bone healing as compared to PBO and SoC at 5 and 9 weeks (with high effect sizes and P = 0.027), while at week 13 all patients had similar healing outcomes. In conclusion, we show that intraosseous administration of ABGS (250 µg rhBMP6/mL ABC) into the distal radial fracture site demonstrated a good tolerability with no serious adverse reactions as well as early accelerated trabecular bone healing as compared to control PBO and SoC patients.


Assuntos
Substitutos Ósseos , Fraturas Fechadas , Proteínas Morfogenéticas Ósseas , Osso Esponjoso , Método Duplo-Cego , Fixação de Fratura , Consolidação da Fratura , Humanos , Resultado do Tratamento
9.
J Bone Miner Res ; 35(10): 1893-1903, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32543706

RESUMO

Bone morphogenetic proteins (BMPs) are potent osteogenic proteins that induce new bone formation in vivo. However, their effect on bone healing in the trabecular bone surfaces remains challenging. We evaluated the safety and efficacy of recombinant human BMP6 (rhBMP6) applied within an autologous blood coagulum (ABC) in a surgically created wedge defect of the proximal tibia in patients undergoing high tibial osteotomy (HTO) for varus deformity and medial osteoarthritis of the knee. We enrolled 20 HTO patients in a randomized, placebo-controlled, double-blinded phase I/II clinical trial. RhBMP6/ABC (1.0 mg/10 mL ABC prepared from peripheral blood) or placebo (10 mL ABC containing excipients) was administered into the tibial wedge defects. Patients were followed for 0 to 24 months by clinical examination (safety) and computed tomography (CT) and serial radiographic analyses (efficacy). The results show that there were no detectable anti-rhBMP6 antibodies in the blood of any of the 20 patients at 14 weeks after implantation. During the 24 months of follow-up, there were no serious adverse reactions recorded. The CT scans from defects of patients treated with rhBMP6/ABC showed an accelerated bone healing compared with placebo at 9 weeks (47.8 ± 24.1 versus 22.2 ± 12.3 mg/cm3 ; p = 0.008) and at 14 weeks (89.7 ± 29.1 versus 53.6 ± 21.9 mg/cm3 ; p = 0.006) follow-up. Radiographic analyses at weeks 6 and 24 and months 12 and 24 suggested the advanced bone formation and remodeling in rhBMP6/ABC-treated patients. In conclusion, we show that rhBMP6/ABC at a dose of 100 µg/mL accelerated bone healing in patients undergoing HTO without serious adverse events and with a good tolerability compared with placebo alone. Overall, for the first time, a BMP-based osteogenic implant was examined against a placebo for bone healing efficacy in the trabecular bone surface, using an objective bone mineral density measurement system. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.


Assuntos
Proteína Morfogenética Óssea 6/uso terapêutico , Osteoartrite do Joelho , Osteotomia , Adulto , Feminino , Humanos , Articulação do Joelho/cirurgia , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/cirurgia , Proteínas Recombinantes/uso terapêutico , Tíbia/diagnóstico por imagem , Tíbia/cirurgia
10.
Bone ; 138: 115448, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32450340

RESUMO

In the present study, we evaluated an autologous bone graft substitute (ABGS) composed of recombinant human BMP6 (rhBMP6) dispersed within autologous blood coagulum (ABC) used as a physiological carrier for new bone formation in spine fusion sheep models. The application of ABGS included cervical cage for use in the anterior lumbar interbody fusion (ALIF), while for the posterolateral lumbar fusion (PLF) sheep model allograft devitalized bone particles (ALLO) were applied with and without use of instrumentation. In the ALIF model, ABGS (rhBMP6/ABC/cage) implants fused significantly when placed in between the L4-L5 vertebrae as compared to control (ABC/cage) which appears to have a fibrocartilaginous gap, as examined by histology and micro CT analysis at 16 weeks following surgery. In the PLF model, ABGS implants with or without ALLO showed a complete fusion when placed ectopically in the gutter bilaterally between two decorticated L4-L5 transverse processes at a success rate of 88% without instrumentation and at 80% with instrumentation; however the bone volume was 50% lower in the instrumentation group than without, as examined by histology, radiographs, micro CT analyses and biomechanical testing at 27 weeks following surgery. The newly formed bone was uniform within ABGS implants resulting in a biomechanically competent and histologically qualified fusion with an optimum dose in the range of 100 µg rhBMP6 per mL ABC, while in the implants that contained ALLO, the mineralized bone particles were substituted by the newly formed remodeling bone via creeping substitution. These findings demonstrate for the first time that ABGS (rhBMP6/ABC) without and with ALLO particles induced a robust bone formation with a successful fusion in sheep models of ALIF and PLF, and that autologous blood coagulum (ABC) can serve as a preferred physiological native carrier to induce new bone at low doses of rhBMP6 and to achieve a successful spinal fusion.


Assuntos
Substitutos Ósseos , Doenças da Coluna Vertebral , Fusão Vertebral , Animais , Vértebras Lombares/cirurgia , Osteogênese , Ovinos
11.
JBMR Plus ; 3(5): e10085, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31131338

RESUMO

BMP2 and BMP7, which use bovine Achilles tendon-derived absorbable collagen sponge and bovine bone collagen as scaffold, respectively, have been approved as bone graft substitutes for orthopedic and dental indications. Here, we describe an osteoinductive autologous bone graft substitute (ABGS) that contains recombinant human BMP6 (rhBMP6) dispersed within autologous blood coagulum (ABC) scaffold. The ABGS is created as an injectable or implantable coagulum gel with rhBMP6 binding tightly to plasma proteins within fibrin meshwork, as examined by dot-blot assays, and is released slowly as an intact protein over 6 to 8 days, as assessed by ELISA. The biological activity of ABGS was examined in vivo in rats (Rattus norvegicus) and rabbits (Oryctolagus cuniculus). In a rat subcutaneous implant assay, ABGS induced endochondral bone formation, as observed by histology and micro-CT analyses. In the rabbit ulna segmental defect model, a reproducible and robust bone formation with complete bridging and restoration of the defect was observed, which is dose dependent, as determined by radiographs, micro-CT, and histological analyses. In ABGS, ABC scaffold provides a permissive environment for bone induction and contributes to the use of lower doses of rhBMP6 compared with BMP7 in bovine bone collagen as scaffold. The newly formed bone undergoes remodeling and establishes cortices uniformly that is restricted to implant site by bridging with host bone. In summary, ABC carrier containing rhBMP6 may serve as an osteoinductive autologous bone graft substitute for several orthopedic applications that include delayed and nonunion fractures, anterior and posterior lumbar interbody fusion, trauma, and nonunions associated with neurofibromatosis type I.

12.
J Neural Eng ; 8(4): 045004, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21775785

RESUMO

We evaluate the encapsulation and packaging reliability of a fully integrated wireless neural interface based on a Utah Slant Electrode Array/integrated neural interface-recording version 5 (USEA/INI-R5) system by monitoring the long term in vitro functional stability and recording longevity. The INI encapsulated with 6 µm Parylene-C was immersed in phosphate buffered saline (PBS) for a period of over 276 days (with the monitoring of the functional device still ongoing). The full functionality (wireless radio-frequency power, command and signal transmission) and the ability of the electrodes to record artificial neural signals even after 276 days of PBS soaking with little change (within 14%) in signal/noise amplitude constitute a major milestone in long term stability and allow us to study and evaluate the encapsulation reliability, functional stability and its potential usefulness for a wireless neural interface for future chronic implants.


Assuntos
Eletrodos Implantados , Desenho de Prótese , Interface Usuário-Computador , Tecnologia sem Fio , Potenciais de Ação/fisiologia , Soluções Tampão , Simulação por Computador , Eletrônica , Microcomputadores , Neurônios/fisiologia , Fosfatos , Polímeros , Sefarose , Xilenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA