Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38427549

RESUMO

We designed and tested a system for real-time control of a user interface by extracting surface electromyographic (sEMG) activity from eight electrodes in a wristband configuration. sEMG data were streamed into a machine-learning algorithm that classified hand gestures in real-time. After an initial model calibration, participants were presented with one of three types of feedback during a human-learning stage: veridical feedback, in which predicted probabilities from the gesture classification algorithm were displayed without alteration; modified feedback, in which we applied a hidden augmentation of error to these probabilities; and no feedback. User performance was then evaluated in a series of minigames, in which subjects were required to use eight gestures to manipulate their game avatar to complete a task. Experimental results indicated that relative to the baseline, the modified feedback condition led to significantly improved accuracy. Class separation also improved, though this trend was not significant. These findings suggest that real-time feedback in a gamified user interface with manipulation of feedback may enable intuitive, rapid, and accurate task acquisition for sEMG-based gesture recognition applications.


Assuntos
Algoritmos , Gestos , Humanos , Eletromiografia/métodos , Retroalimentação , Avatar
2.
J Biomed Opt ; 28(6): 065003, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37325190

RESUMO

Significance: We present a fiberless, portable, and modular continuous wave-functional near-infrared spectroscopy system, Spotlight, consisting of multiple palm-sized modules-each containing high-density light-emitting diode and silicon photomultiplier detector arrays embedded in a flexible membrane that facilitates optode coupling to scalp curvature. Aim: Spotlight's goal is to be a more portable, accessible, and powerful functional near-infrared spectroscopy (fNIRS) device for neuroscience and brain-computer interface (BCI) applications. We hope that the Spotlight designs we share here can spur more advances in fNIRS technology and better enable future non-invasive neuroscience and BCI research. Approach: We report sensor characteristics in system validation on phantoms and motor cortical hemodynamic responses in a human finger-tapping experiment, where subjects wore custom 3D-printed caps with two sensor modules. Results: The task conditions can be decoded offline with a median accuracy of 69.6%, reaching 94.7% for the best subject, and at a comparable accuracy in real time for a subset of subjects. We quantified how well the custom caps fitted to each subject and observed that better fit leads to more observed task-dependent hemodynamic response and better decoding accuracy. Conclusions: The advances presented here should serve to make fNIRS more accessible for BCI applications.


Assuntos
Hemodinâmica , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Hemodinâmica/fisiologia , Mãos
3.
Theranostics ; 10(7): 2965-2981, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194849

RESUMO

Magnetic fluid hyperthermia (MFH) treatment makes use of a suspension of superparamagnetic iron oxide nanoparticles, administered systemically or locally, in combination with an externally applied alternating magnetic field, to ablate target tissue by generating heat through a process called induction. The heat generated above the mammalian euthermic temperature of 37°C induces apoptotic cell death and/or enhances the susceptibility of the target tissue to other therapies such as radiation and chemotherapy. While most hyperthermia techniques currently in development are targeted towards cancer treatment, hyperthermia is also used to treat restenosis, to remove plaques, to ablate nerves and to alleviate pain by increasing regional blood flow. While RF hyperthermia can be directed invasively towards the site of treatment, non-invasive localization of heat through induction is challenging. In this review, we discuss recent progress in the field of RF magnetic fluid hyperthermia and introduce a new diagnostic imaging modality called magnetic particle imaging that allows for a focused theranostic approach encompassing treatment planning, treatment monitoring and spatially localized inductive heating.


Assuntos
Diagnóstico por Imagem/métodos , Compostos Férricos/análise , Hipertermia Induzida/métodos , Nanopartículas Magnéticas de Óxido de Ferro/análise , Terapia por Radiofrequência/métodos , Nanomedicina Teranóstica/métodos , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Materiais Revestidos Biocompatíveis , Diagnóstico por Imagem/instrumentação , Desenho de Equipamento , Compostos Férricos/administração & dosagem , Previsões , Humanos , Hipertermia Induzida/instrumentação , Nanopartículas Magnéticas de Óxido de Ferro/administração & dosagem , Magnetismo/instrumentação , Masculino , Camundongos , Projetos Piloto , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/terapia
4.
Br J Radiol ; 91(1091): 20180326, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29888968

RESUMO

Magnetic particle imaging (MPI), introduced at the beginning of the twenty-first century, is emerging as a promising diagnostic tool in addition to the current repertoire of medical imaging modalities. Using superparamagnetic iron oxide nanoparticles (SPIOs), that are available for clinical use, MPI produces high contrast and highly sensitive tomographic images with absolute quantitation, no tissue attenuation at-depth, and there are no view limitations. The MPI signal is governed by the Brownian and Néel relaxation behavior of the particles. The relaxation time constants of these particles can be utilized to map information relating to the local microenvironment, such as viscosity and temperature. Proof-of-concept pre-clinical studies have shown favourable applications of MPI for better understanding the pathophysiology associated with vascular defects, tracking cell-based therapies and nanotheranostics. Functional imaging techniques using MPI will be useful for studying the pathology related to viscosity changes such as in vascular plaques and in determining cell viability of superparamagnetic iron oxide nanoparticle labeled cells. In this review article, an overview of MPI is provided with discussions mainly focusing on MPI tracers, applications of translational capabilities ranging from diagnostics to theranostics and finally outline a promising path towards clinical translation.


Assuntos
Meios de Contraste , Magnetismo/métodos , Nanopartículas de Magnetita , Neoplasias/diagnóstico por imagem , Angiografia/métodos , Tecnologia Biomédica , Rastreamento de Células/métodos , Humanos , Magnetismo/instrumentação , Imagem de Perfusão/métodos , Sensibilidade e Especificidade , Marcadores de Spin , Nanomedicina Teranóstica/instrumentação , Nanomedicina Teranóstica/métodos
5.
Curr Opin Chem Biol ; 45: 131-138, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29754007

RESUMO

Magnetic particle imaging (MPI) is an emerging ionizing radiation-free biomedical tracer imaging technique that directly images the intense magnetization of superparamagnetic iron oxide nanoparticles (SPIOs). MPI offers ideal image contrast because MPI shows zero signal from background tissues. Moreover, there is zero attenuation of the signal with depth in tissue, allowing for imaging deep inside the body quantitatively at any location. Recent work has demonstrated the potential of MPI for robust, sensitive vascular imaging and cell tracking with high contrast and dose-limited sensitivity comparable to nuclear medicine. To foster future applications in MPI, this new biomedical imaging field is welcoming researchers with expertise in imaging physics, magnetic nanoparticle synthesis and functionalization, nanoscale physics, and small animal imaging applications.


Assuntos
Vasos Sanguíneos/diagnóstico por imagem , Rastreamento de Células/instrumentação , Meios de Contraste/análise , Técnicas de Diagnóstico Cardiovascular/instrumentação , Magnetismo/instrumentação , Nanopartículas de Magnetita/análise , Animais , Rastreamento de Células/métodos , Desenho de Equipamento , Humanos , Magnetismo/métodos
6.
Mol Imaging Biol ; 19(3): 385-390, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28396973

RESUMO

Magnetic particle imaging (MPI) is a new molecular imaging technique that directly images superparamagnetic tracers with high image contrast and sensitivity approaching nuclear medicine techniques-but without ionizing radiation. Since its inception, the MPI research field has quickly progressed in imaging theory, hardware, tracer design, and biomedical applications. Here, we describe the history and field of MPI, outline pressing challenges to MPI technology and clinical translation, highlight unique applications in MPI, and describe the role of the WMIS MPI Interest Group in collaboratively advancing MPI as a molecular imaging technique. We invite interested investigators to join the MPI Interest Group and contribute new insights and innovations to the MPI field.


Assuntos
Dextranos/química , Nanopartículas de Magnetita/química , Imagem Molecular/métodos , Animais , Humanos
7.
Phys Med Biol ; 62(9): 3501-3509, 2017 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-28378708

RESUMO

Emergency room visits due to traumatic brain injury (TBI) is common, but classifying the severity of the injury remains an open challenge. Some subjective methods such as the Glasgow Coma Scale attempt to classify traumatic brain injuries, as well as some imaging based modalities such as computed tomography and magnetic resonance imaging. However, to date it is still difficult to detect and monitor mild to moderate injuries. In this report, we demonstrate that the magnetic particle imaging (MPI) modality can be applied to imaging TBI events with excellent contrast. MPI can monitor injected iron nanoparticles over long time scales without signal loss, allowing researchers and clinicians to monitor the change in blood pools as the wound heals.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Diagnóstico por Imagem/métodos , Nanopartículas de Magnetita , Animais , Diagnóstico por Imagem/instrumentação , Feminino , Ratos , Ratos Endogâmicos F344
8.
PLoS One ; 10(10): e0140137, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26495839

RESUMO

Magnetic Particle Imaging (mpi) is an emerging imaging modality with exceptional promise for clinical applications in rapid angiography, cell therapy tracking, cancer imaging, and inflammation imaging. Recent publications have demonstrated quantitative mpi across rat sized fields of view with x-space reconstruction methods. Critical to any medical imaging technology is the reliability and accuracy of image reconstruction. Because the average value of the mpi signal is lost during direct-feedthrough signal filtering, mpi reconstruction algorithms must recover this zero-frequency value. Prior x-space mpi recovery techniques were limited to 1d approaches which could introduce artifacts when reconstructing a 3d image. In this paper, we formulate x-space reconstruction as a 3d convex optimization problem and apply robust a priori knowledge of image smoothness and non-negativity to reduce non-physical banding and haze artifacts. We conclude with a discussion of the powerful extensibility of the presented formulation for future applications.


Assuntos
Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Nanopartículas de Magnetita/química , Algoritmos , Vasos Coronários/patologia , Humanos , Modelos Teóricos , Imagens de Fantasmas , Reprodutibilidade dos Testes
9.
Biomed Opt Express ; 2(8): 2383-91, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21833375

RESUMO

Ultrafast (femtosecond) lasers have become an important tool to investigate biological phenomena because of their ability to effect highly localized tissue removal in surgical applications. Here we describe programmable, microscale, femtosecond-laser ablation of melanocytes found on Xenopus laevis tadpoles, a technique that is applicable to biological studies in development, regeneration, and cancer research. We illustrate laser marking of individual melanocytes, and the drawing of patterns on melanocyte clusters to help track their migration and/or regeneration. We also demonstrate that this system can upgrade scratch tests, a technique used widely with cultured cells to study cell migration and wound healing, to the more realistic in vivo realm, by clearing a region of melanocytes and monitoring their return over time. In addition, we show how melanocyte ablation can be used for loss-of-function experiments by damaging neighboring tissue, using the example of abnormal tail regeneration following localized spinal cord damage. Since the size, shape, and depth of melanocytes vary as a function of tadpole age and melanocyte location (head or tail), an ablation threshold chart is given. Mechanisms of laser ablation are also discussed.

10.
PLoS One ; 6(9): e24953, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21949803

RESUMO

BACKGROUND: With the goal of learning to induce regeneration in human beings as a treatment for tissue loss, research is being conducted into the molecular and physiological details of the regeneration process. The tail of Xenopus laevis tadpoles has recently emerged as an important model for these studies; we explored the role of the spinal cord during tadpole tail regeneration. METHODS AND RESULTS: Using ultrafast lasers to ablate cells, and Geometric Morphometrics to quantitatively analyze regenerate morphology, we explored the influence of different cell populations. For at least twenty-four hours after amputation (hpa), laser-induced damage to the dorsal midline affected the morphology of the regenerated tail; damage induced 48 hpa or later did not. Targeting different positions along the anterior-posterior (AP) axis caused different shape changes in the regenerate. Interestingly, damaging two positions affected regenerate morphology in a qualitatively different way than did damaging either position alone. Quantitative comparison of regenerate shapes provided strong evidence against a gradient and for the existence of position-specific morphogenetic information along the entire AP axis. CONCLUSIONS: We infer that there is a conduit of morphology-influencing information that requires a continuous dorsal midline, particularly an undamaged spinal cord. Contrary to expectation, this information is not in a gradient and it is not localized to the regeneration bud. We present a model of morphogenetic information flow from tissue undamaged by amputation and conclude that studies of information coming from far outside the amputation plane and regeneration bud will be critical for understanding regeneration and for translating fundamental understanding into biomedical approaches.


Assuntos
Larva/fisiologia , Lasers , Morfogênese/fisiologia , Regeneração/fisiologia , Cauda/lesões , Cauda/fisiologia , Animais , Feminino , Humanos , Transdução de Sinais , Cauda/inervação , Xenopus laevis/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA