Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 187(8): 1853-1873.e15, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38574728

RESUMO

This study has followed a birth cohort for over 20 years to find factors associated with neurodevelopmental disorder (ND) diagnosis. Detailed, early-life longitudinal questionnaires captured infection and antibiotic events, stress, prenatal factors, family history, and more. Biomarkers including cord serum metabolome and lipidome, human leukocyte antigen (HLA) genotype, infant microbiota, and stool metabolome were assessed. Among the 16,440 Swedish children followed across time, 1,197 developed an ND. Significant associations emerged for future ND diagnosis in general and for specific ND subtypes, spanning intellectual disability, speech disorder, attention-deficit/hyperactivity disorder, and autism. This investigation revealed microbiome connections to future diagnosis as well as early emerging mood and gastrointestinal problems. The findings suggest links to immunodysregulation and metabolism, compounded by stress, early-life infection, and antibiotics. The convergence of infant biomarkers and risk factors in this prospective, longitudinal study on a large-scale population establishes a foundation for early-life prediction and intervention in neurodevelopment.


Assuntos
Biomarcadores , Microbioma Gastrointestinal , Transtornos do Neurodesenvolvimento , Criança , Feminino , Humanos , Lactente , Gravidez , Transtorno do Espectro Autista/microbiologia , Estudos Longitudinais , Estudos Prospectivos , Fezes/microbiologia , Transtornos do Humor/microbiologia
2.
Proc Natl Acad Sci U S A ; 121(23): e2315363121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805281

RESUMO

Regulatory T cells (Tregs) are central in controlling immune responses, and dysregulation of their function can lead to autoimmune disorders or cancer. Despite extensive studies on Tregs, the basis of epigenetic regulation of human Treg development and function is incompletely understood. Long intergenic noncoding RNAs (lincRNA)s are important for shaping and maintaining the epigenetic landscape in different cell types. In this study, we identified a gene on the chromosome 6p25.3 locus, encoding a lincRNA, that was up-regulated during early differentiation of human Tregs. The lincRNA regulated the expression of interleukin-2 receptor alpha (IL2RA), and we named it the lincRNA regulator of IL2RA (LIRIL2R). Through transcriptomics, epigenomics, and proteomics analysis of LIRIL2R-deficient Tregs, coupled with global profiling of LIRIL2R binding sites using chromatin isolation by RNA purification, followed by sequencing, we identified IL2RA as a target of LIRIL2R. This nuclear lincRNA binds upstream of the IL2RA locus and regulates its epigenetic landscape and transcription. CRISPR-mediated deletion of the LIRIL2R-bound region at the IL2RA locus resulted in reduced IL2RA expression. Notably, LIRIL2R deficiency led to reduced expression of Treg-signature genes (e.g., FOXP3, CTLA4, and PDCD1), upregulation of genes associated with effector T cells (e.g., SATB1 and GATA3), and loss of Treg-mediated suppression.


Assuntos
Fatores de Transcrição Forkhead , Subunidade alfa de Receptor de Interleucina-2 , RNA Longo não Codificante , Linfócitos T Reguladores , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Epigênese Genética , Regulação da Expressão Gênica , Diferenciação Celular/genética
3.
Anal Chem ; 96(22): 8893-8904, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38782403

RESUMO

Metabolites from feces provide important insights into the functionality of the gut microbiome. As immediate freezing is not always feasible in gut microbiome studies, there is a need for sampling protocols that provide the stability of the fecal metabolome and microbiome at room temperature (RT). Here, we investigated the stability of various metabolites and the microbiome (16S rRNA) in feces collected in 95% ethanol (EtOH) and commercially available sample collection kits with specific preservatives OMNImet•GUT/OMNIgene•GUT. To simulate field-collection scenarios, the samples were stored at different temperatures at varying durations (24 h + 4 °C, 24 h RT, 36 h RT, 48 h RT, and 7 days RT) and compared to aliquots immediately frozen at -80 °C. We applied several targeted and untargeted metabolomics platforms to measure lipids, polar metabolites, endocannabinoids, short-chain fatty acids (SCFAs), and bile acids (BAs). We found that SCFAs in the nonstabilized samples increased over time, while a stable profile was recorded in sample aliquots stored in 95% EtOH and OMNImet•GUT. When comparing the metabolite levels between aliquots stored at room temperature and at +4 °C, we detected several changes in microbial metabolites, including multiple BAs and SCFAs. Taken together, we found that storing samples at RT and stabilizing them in 95% EtOH yielded metabolomic results comparable to those from flash freezing. We also found that the overall composition of the microbiome did not vary significantly between different storage types. However, notable differences were observed in the α diversity. Altogether, the stability of the metabolome and microbiome in 95% EtOH provided results similar to those of the validated commercial collection kits OMNImet•GUT and OMNIgene•GUT, respectively.


Assuntos
Etanol , Fezes , Microbioma Gastrointestinal , Metabolômica , Etanol/metabolismo , Etanol/análise , Fezes/microbiologia , Fezes/química , Humanos , Manejo de Espécimes/métodos , RNA Ribossômico 16S , Temperatura
4.
Environ Sci Technol ; 58(5): 2214-2223, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38263945

RESUMO

The composition of human breast milk (HBM) exhibits significant variability both between individuals and within the same individual. While environmental factors are believed to play a role in this variation, their influence on breast milk composition remains inadequately understood. Herein, we investigate the impact of environmental factors on HBM lipid composition in a general population cohort. The study included mothers (All Babies In Southeast Sweden study) whose children later progressed to one or more immune-mediated diseases later in life: type 1 diabetes (n = 9), celiac disease (n = 24), juvenile idiopathic arthritis (n = 9), inflammatory bowel disease (n = 7), hypothyroidism (n = 6), and matched controls (n = 173). Lipidome of HBM was characterized by liquid chromatography combined with high-resolution mass spectrometry. We observed that maternal age, body mass index, diet, and exposure to perfluorinated alkyl substances (PFASs) had a marked impact on breast milk lipidome, with larger changes observed in the milk of those mothers whose children later developed autoimmune diseases. We also observed differences in breast milk lipid composition in those mothers whose offspring later developed autoimmune diseases. Our study suggests that breast milk lipid composition is modified by a complex interaction between genetic and environmental factors, and, importantly, this impact was significantly more pronounced in those mothers whose offspring later developed autoimmune/inflammatory diseases. Our findings also suggest that merely assessing PFAS concentration may not capture the full extent of the impact of chemical exposures; thus, the more comprehensive exposome approach is essential for accurately assessing the impact of PFAS exposure on HBM and, consequently, on the health outcomes of the offspring.


Assuntos
Doenças Autoimunes , Fluorocarbonos , Lactente , Feminino , Criança , Humanos , Leite Humano/química , Lipidômica , Exposição Ambiental , Lipídeos , Fluorocarbonos/análise
5.
Environ Int ; 190: 108820, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38906088

RESUMO

PFAS are ubiquitous industrial chemicals with known adverse health effects, particularly on the liver. The liver, being a vital metabolic organ, is susceptible to PFAS-induced metabolic dysregulation, leading to conditions such as hepatotoxicity and metabolic disturbances. In this study, we investigated the phenotypic and metabolic responses of PFAS exposure using two hepatocyte models, HepG2 (male cell line) and HepaRG (female cell line), aiming to define phenotypic alterations, and metabolic disturbances at the metabolite and pathway levels. The PFAS mixture composition was selected based on epidemiological data, covering a broad concentration spectrum observed in diverse human populations. Phenotypic profiling by Cell Painting assay disclosed predominant effects of PFAS exposure on mitochondrial structure and function in both cell models as well as effects on F-actin, Golgi apparatus, and plasma membrane-associated measures. We employed comprehensive metabolic characterization using liquid chromatography combined with high-resolution mass spectrometry (LC-HRMS). We observed dose-dependent changes in the metabolic profiles, particularly in lipid, steroid, amino acid and sugar and carbohydrate metabolism in both cells as well as in cell media, with HepaRG cell line showing a stronger metabolic response. In cells, most of the bile acids, acylcarnitines and free fatty acids showed downregulation, while medium-chain fatty acids and carnosine were upregulated, while the cell media showed different response especially in relation to the bile acids in HepaRG cell media. Importantly, we observed also nonmonotonic response for several phenotypic features and metabolites. On the pathway level, PFAS exposure was also associated with pathways indicating oxidative stress and inflammatory responses. Taken together, our findings on PFAS-induced phenotypic and metabolic disruptions in hepatocytes shed light on potential mechanisms contributing to the broader comprehension of PFAS-related health risks.

6.
J Expo Sci Environ Epidemiol ; 34(4): 647-658, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678133

RESUMO

BACKGROUND: Prenatal exposure to environmental contaminants is a significant health concern because it has the potential to interfere with host metabolism, leading to adverse health effects in early childhood and later in life. Growing evidence suggests that genetic and environmental factors, as well as their interactions, play a significant role in the development of autoimmune diseases. OBJECTIVE: In this study, we hypothesized that prenatal exposure to environmental contaminants impacts cord serum metabolome and contributes to the development of autoimmune diseases. METHODS: We selected cord serum samples from All Babies in Southeast Sweden (ABIS) general population cohort, from infants who later developed one or more autoimmune-mediated and inflammatory diseases: celiac disease (CD), Crohn's disease (IBD), hypothyroidism (HT), juvenile idiopathic arthritis (JIA), and type 1 diabetes (T1D) (all cases, N = 62), along with matched controls (N = 268). Using integrated exposomics and metabolomics mass spectrometry (MS) based platforms, we determined the levels of environmental contaminants and metabolites. RESULTS: Differences in exposure levels were found between the controls and those who later developed various diseases. High contaminant exposure levels were associated with changes in metabolome, including amino acids and free fatty acids. Specifically, we identified marked associations between metabolite profiles and exposure levels of deoxynivalenol (DON), bisphenol S (BPS), and specific per- and polyfluorinated substances (PFAS). IMPACT STATEMENT: Abnormal metabolism is a common feature preceding several autoimmune and inflammatory diseases. However, few studies compared common and specific metabolic patterns preceding these diseases. Here we hypothesized that exposure to environmental contaminants impacts cord serum metabolome, which may contribute to the development of autoimmune diseases. We found differences in exposure levels between the controls and those who later developed various diseases, and importantly, on the metabolic changes associated with the exposures. High contaminant exposure levels were associated with specific changes in metabolome. Our study suggests that prenatal exposure to specific environmental contaminants alters the cord serum metabolomes, which, in turn, might increase the risk of various immune-mediated diseases.


Assuntos
Poluentes Ambientais , Sangue Fetal , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Gravidez , Sangue Fetal/química , Suécia , Efeitos Tardios da Exposição Pré-Natal/sangue , Poluentes Ambientais/sangue , Metaboloma/efeitos dos fármacos , Masculino , Recém-Nascido , Doenças Autoimunes/induzido quimicamente , Doenças Autoimunes/sangue , Metabolômica , Adulto , Estudos de Coortes , Exposição Ambiental/efeitos adversos , Estudos de Casos e Controles , Lactente
7.
Environ Int ; 186: 108569, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522229

RESUMO

Environmental toxicants (ETs) are associated with adverse health outcomes. Here we hypothesized that exposures to ETs are linked with obesity and insulin resistance partly through a dysbiotic gut microbiota and changes in the serum levels of secondary bile acids (BAs). Serum BAs, per- and polyfluoroalkyl substances (PFAS) and additional twenty-seven ETs were measured by mass spectrometry in 264 Danes (121 men and 143 women, aged 56.6 ± 7.3 years, BMI 29.7 ± 6.0 kg/m2) using a combination of targeted and suspect screening approaches. Bacterial species were identified based on whole-genome shotgun sequencing (WGS) of DNA extracted from stool samples. Personalized genome-scale metabolic models (GEMs) of gut microbial communities were developed to elucidate regulation of BA pathways. Subsequently, we compared findings from the human study with metabolic implications of exposure to perfluorooctanoic acid (PFOA) in PPARα-humanized mice. Serum levels of twelve ETs were associated with obesity and insulin resistance. High chemical exposure was associated with increased abundance of several bacterial species (spp.) of genus (Anaerotruncus, Alistipes, Bacteroides, Bifidobacterium, Clostridium, Dorea, Eubacterium, Escherichia, Prevotella, Ruminococcus, Roseburia, Subdoligranulum, and Veillonella), particularly in men. Conversely, females in the higher exposure group, showed a decrease abundance of Prevotella copri. High concentrations of ETs were correlated with increased levels of secondary BAs including lithocholic acid (LCA), and decreased levels of ursodeoxycholic acid (UDCA). In silico causal inference analyses suggested that microbiome-derived secondary BAs may act as mediators between ETs and obesity or insulin resistance. Furthermore, these findings were substantiated by the outcome of the murine exposure study. Our combined epidemiological and mechanistic studies suggest that multiple ETs may play a role in the etiology of obesity and insulin resistance. These effects may arise from disruptions in the microbial biosynthesis of secondary BAs.


Assuntos
Disbiose , Exposição Ambiental , Poluentes Ambientais , Microbioma Gastrointestinal , Resistência à Insulina , Obesidade , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Obesidade/microbiologia , Pessoa de Meia-Idade , Feminino , Masculino , Disbiose/induzido quimicamente , Animais , Camundongos , Ácidos e Sais Biliares/metabolismo , Idoso
8.
Lancet Planet Health ; 8(1): e5-e17, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199723

RESUMO

BACKGROUND: Perfluoroalkyl and polyfluoroalkyl substances are classed as endocrine disrupting compounds but continue to be used in many products such as firefighting foams, flame retardants, utensil coatings, and waterproofing of food packaging. Perfluoroalkyl exposure aberrantly modulates lipid, metabolite, and bile acid levels, increasing susceptibility to onset and severity of metabolic diseases, such as diabetes and metabolic dysfunction-associated steatotic liver disease. To date, most studies in humans have focused on perfluoroalkyl-exposure effects in adults. In this study we aimed to show if perfluoroalkyls are present in the human fetal liver and if they have metabolic consequences for the human fetus. METHODS: In this cross-sectional study, human fetal livers from elective termination of pregnancies at the Aberdeen Pregnancy Counselling Service, Aberdeen, UK, were analysed by both targeted (bile acids and perfluoroalkyl substances) and combined targeted and untargeted (lipids and polar metabolites) mass spectrometry based metabolomic analyses, as well as with RNA-Seq. Only fetuses from normally progressing pregnancies (determined at ultrasound scan before termination), terminated for non-medical reasons, from women older than 16 years, fluent in English, and between 11 and 21 weeks of gestation were collected. Women exhibiting considerable emotional distress or whose fetuses had anomalies identified at ultrasound scan were excluded. Stringent bioinformatic and statistical methods such as partial correlation network analysis, linear regression, and pathway analysis were applied to this data to investigate the association of perfluoroalkyl exposure with hepatic metabolic pathways. FINDINGS: Fetuses included in this study were collected between Dec 2, 2004, and Oct 27, 2014. 78 fetuses were included in the study: all 78 fetuses were included in the metabolomics analysis (40 female and 38 male) and 57 fetuses were included in the RNA-Seq analysis (28 female and 29 male). Metabolites associated with perfluoroalkyl were identified in the fetal liver and these varied with gestational age. Conjugated bile acids were markedly positively associated with fetal age. 23 amino acids, fatty acids, and sugar derivatives in fetal livers were inversely associated with perfluoroalkyl exposure, and the bile acid glycolithocholic acid was markedly positively associated with all quantified perfluoroalkyl. Furthermore, 7α-hydroxy-4-cholesten-3-one, a marker of bile acid synthesis rate, was strongly positively associated with perfluoroalkyl levels and was detectable as early as gestational week 12. INTERPRETATION: Our study shows direct evidence for the in utero effects of perfluoroalkyl exposure on specific key hepatic products. Our results provide evidence that perfluoroalkyl exposure, with potential future consequences, manifests in the human fetus as early as the first trimester of gestation. Furthermore, the profiles of metabolic changes resemble those observed in perinatal perfluoroalkyl exposures. Such exposures are already linked with susceptibility, initiation, progression, and exacerbation of a wide range of metabolic diseases. FUNDING: UK Medical Research Council, Horizon Europe Program of the European Union, Seventh Framework Programme of the European Union, NHS Grampian Endowments grants, European Partnership for the Assessment of Risks from Chemicals, Swedish Research Council, Formas, Novo Nordisk Foundation, and the Academy of Finland.


Assuntos
Fluorocarbonos , Doenças Metabólicas , Adulto , Gravidez , Humanos , Feminino , Masculino , Estudos Transversais , Metaboloma , Escócia , Ácidos e Sais Biliares , Fluorocarbonos/efeitos adversos
9.
Nat Protoc ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769143

RESUMO

Untargeted mass spectrometry (MS) experiments produce complex, multidimensional data that are practically impossible to investigate manually. For this reason, computational pipelines are needed to extract relevant information from raw spectral data and convert it into a more comprehensible format. Depending on the sample type and/or goal of the study, a variety of MS platforms can be used for such analysis. MZmine is an open-source software for the processing of raw spectral data generated by different MS platforms. Examples include liquid chromatography-MS, gas chromatography-MS and MS-imaging. These data might typically be associated with various applications including metabolomics and lipidomics. Moreover, the third version of the software, described herein, supports the processing of ion mobility spectrometry (IMS) data. The present protocol provides three distinct procedures to perform feature detection and annotation of untargeted MS data produced by different instrumental setups: liquid chromatography-(IMS-)MS, gas chromatography-MS and (IMS-)MS imaging. For training purposes, example datasets are provided together with configuration batch files (i.e., list of processing steps and parameters) to allow new users to easily replicate the described workflows. Depending on the number of data files and available computing resources, we anticipate this to take between 2 and 24 h for new MZmine users and nonexperts. Within each procedure, we provide a detailed description for all processing parameters together with instructions/recommendations for their optimization. The main generated outputs are represented by aligned feature tables and fragmentation spectra lists that can be used by other third-party tools for further downstream analysis.

10.
Nat Commun ; 15(1): 4567, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830848

RESUMO

Improved biomarkers are needed for pediatric inflammatory bowel disease. Here we identify a diagnostic lipidomic signature for pediatric inflammatory bowel disease by analyzing blood samples from a discovery cohort of incident treatment-naïve pediatric patients and validating findings in an independent inception cohort. The lipidomic signature comprising of only lactosyl ceramide (d18:1/16:0) and phosphatidylcholine (18:0p/22:6) improves the diagnostic prediction compared with high-sensitivity C-reactive protein. Adding high-sensitivity C-reactive protein to the signature does not improve its performance. In patients providing a stool sample, the diagnostic performance of the lipidomic signature and fecal calprotectin, a marker of gastrointestinal inflammation, does not substantially differ. Upon investigation in a third pediatric cohort, the findings of increased lactosyl ceramide (d18:1/16:0) and decreased phosphatidylcholine (18:0p/22:6) absolute concentrations are confirmed. Translation of the lipidomic signature into a scalable diagnostic blood test for pediatric inflammatory bowel disease has the potential to support clinical decision making.


Assuntos
Biomarcadores , Doenças Inflamatórias Intestinais , Lipidômica , Humanos , Criança , Lipidômica/métodos , Masculino , Feminino , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/sangue , Doenças Inflamatórias Intestinais/metabolismo , Biomarcadores/sangue , Adolescente , Fezes/química , Fosfatidilcolinas/sangue , Proteína C-Reativa/análise , Proteína C-Reativa/metabolismo , Pré-Escolar , Complexo Antígeno L1 Leucocitário/sangue , Complexo Antígeno L1 Leucocitário/análise , Estudos de Coortes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA