RESUMO
Normal platelet function is critical to blood hemostasis and maintenance of a closed circulatory system. Heightened platelet reactivity, however, is associated with cardiometabolic diseases and enhanced potential for thrombotic events. We now show gut microbes, through generation of trimethylamine N-oxide (TMAO), directly contribute to platelet hyperreactivity and enhanced thrombosis potential. Plasma TMAO levels in subjects (n > 4,000) independently predicted incident (3 years) thrombosis (heart attack, stroke) risk. Direct exposure of platelets to TMAO enhanced sub-maximal stimulus-dependent platelet activation from multiple agonists through augmented Ca(2+) release from intracellular stores. Animal model studies employing dietary choline or TMAO, germ-free mice, and microbial transplantation collectively confirm a role for gut microbiota and TMAO in modulating platelet hyperresponsiveness and thrombosis potential and identify microbial taxa associated with plasma TMAO and thrombosis potential. Collectively, the present results reveal a previously unrecognized mechanistic link between specific dietary nutrients, gut microbes, platelet function, and thrombosis risk.
Assuntos
Plaquetas/metabolismo , Microbioma Gastrointestinal , Metilaminas/metabolismo , Trombose/metabolismo , Animais , Cálcio/metabolismo , Lesões das Artérias Carótidas/patologia , Ceco/microbiologia , Cloretos , Colina/metabolismo , Dieta , Feminino , Compostos Férricos , Vida Livre de Germes , Humanos , Metilaminas/sangue , Camundongos , Camundongos Endogâmicos C57BL , Trombose/patologiaRESUMO
Trimethylamine (TMA) N-oxide (TMAO), a gut-microbiota-dependent metabolite, both enhances atherosclerosis in animal models and is associated with cardiovascular risks in clinical studies. Here, we investigate the impact of targeted inhibition of the first step in TMAO generation, commensal microbial TMA production, on diet-induced atherosclerosis. A structural analog of choline, 3,3-dimethyl-1-butanol (DMB), is shown to non-lethally inhibit TMA formation from cultured microbes, to inhibit distinct microbial TMA lyases, and to both inhibit TMA production from physiologic polymicrobial cultures (e.g., intestinal contents, human feces) and reduce TMAO levels in mice fed a high-choline or L-carnitine diet. DMB inhibited choline diet-enhanced endogenous macrophage foam cell formation and atherosclerotic lesion development in apolipoprotein e(-/-) mice without alterations in circulating cholesterol levels. The present studies suggest that targeting gut microbial production of TMA specifically and non-lethal microbial inhibitors in general may serve as a potential therapeutic approach for the treatment of cardiometabolic diseases.
Assuntos
Aterosclerose/tratamento farmacológico , Colina/análogos & derivados , Trato Gastrointestinal/microbiologia , Hexanóis/administração & dosagem , Liases/antagonistas & inibidores , Metilaminas/metabolismo , Animais , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Colina/metabolismo , Dieta , Fezes/química , Células Espumosas/metabolismo , Humanos , Liases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicrobiotaRESUMO
BACKGROUND: Endometriosis, defined as the presence of endometrial-like tissue outside of the uterus, is one of the most prevalent gynecological disorders. Although different theories have been proposed, its pathogenesis is not clear. Novel studies indicate that the gut microbiome may be involved in the etiology of endometriosis; nevertheless, the connection between microbes, their dysbiosis, and the development of endometriosis is understudied. This case-control study analyzed the gut microbiome in women with and without endometriosis to identify microbial targets involved in the disease. METHODS: A subsample of 1000 women from the Estonian Microbiome cohort, including 136 women with endometriosis and 864 control women, was analyzed. Microbial composition was determined by shotgun metagenomics and microbial functional pathways were annotated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Partitioning Around Medoids (PAM) algorithm was performed to cluster the microbial profile of the Estonian population. The alpha- and beta-diversity and differential abundance analyses were performed to assess the gut microbiome (species and KEGG orthologies (KO)) in both groups. Metagenomic reads were mapped to estrobolome-related enzymes' sequences to study potential microbiome-estrogen metabolism axis alterations in endometriosis. RESULTS: Diversity analyses did not detect significant differences between women with and without endometriosis (alpha-diversity: all p-values > 0.05; beta-diversity: PERMANOVA, both R 2 < 0.0007, p-values > 0.05). No differential species or pathways were detected after multiple testing adjustment (all FDR p-values > 0.05). Sensitivity analysis excluding women at menopause (> 50 years) confirmed our results. Estrobolome-associated enzymes' sequence reads were not significantly different between groups (all FDR p-values > 0.05). CONCLUSIONS: Our findings do not provide enough evidence to support the existence of a gut microbiome-dependent mechanism directly implicated in the pathogenesis of endometriosis. To the best of our knowledge, this is the largest metagenome study on endometriosis conducted to date.
Assuntos
Endometriose , Microbioma Gastrointestinal , Humanos , Endometriose/microbiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Adulto , Estudos de Casos e Controles , Estônia/epidemiologia , Estudos de Coortes , Pessoa de Meia-Idade , Metagenômica , Disbiose/microbiologia , Adulto JovemRESUMO
The beneficial effects of physical activity (PA) on gut microbiome have been reported, nevertheless the findings are inconsistent, with the main limitation of subjective methods for assessing PA. It is well accepted that using an objective assessment of PA reduces the measurement error and also allows objective assessment of sedentary behavior (SB). We aimed to study the associations between accelerometer-assessed behaviors (i.e., SB, light-intensity physical activity [LPA] and moderate-to-vigorous physical activity [MVPA]) with the gut microbiome using compositional data analysis, a novel approach that enables to study these behaviors accounting for their inter-dependency. This cross-sectional study included 289 women from the Northern Finland Birth Cohort 1966. Physical activity was measured during 14 days by wrist-worn accelerometers. Analyses based on the combined effect of MVPA and SB, and compositional data analyses in association with the gut microbiome data were performed. The microbial alpha- and beta-diversity were not significantly different between the MVPA-SB groups, and no differentially abundant microorganisms were detected. Compositional data analysis did not show any significant associations between any movement behavior (relative to the others) on microbial alpha-diversity. Butyrate-producing bacteria such as Agathobacter and Lachnospiraceae CAG56 were significantly more abundant when reallocating time from LPA or SB to MVPA (γ = 0.609 and 0.113, both p-values = 0.007). While PA and SB were not associated with microbial diversity, we found associations of these behaviors with specific gut bacteria, suggesting that PA of at least moderate intensity (i.e., MVPA) could increase the abundance of short-chain fatty acid-producing microbes.
Assuntos
Acelerometria , Exercício Físico , Microbioma Gastrointestinal , Comportamento Sedentário , Humanos , Feminino , Microbioma Gastrointestinal/fisiologia , Estudos Transversais , Exercício Físico/fisiologia , Pessoa de Meia-Idade , FinlândiaRESUMO
INTRODUCTION: The endometrial microbiota has been linked to several gynecological disorders, including infertility. It has been shown that the microbial profile of endometrium could have a role in fertilization and pregnancy outcomes. In this study we aim to assess the microbial community of endometrial tissue (ET) and endometrial fluid (EF) samples in women receiving in vitro fertilization (IVF) treatment. We also search for possible associations between chronic endometritis (CE) and endometrial microbiota. MATERIAL AND METHODS: This was a cohort study involving 25 women aged between 28 and 42 years with both primary and secondary infertility and with at least one IVF failure. The ET and EF sample collection was carried out between September 2016 and November 2018. Each of the participants provided two types of samples-tissue and fluid samples (50 samples in total). A 16S rRNA sequencing was performed on both of the sample types for microbial profile evaluation. CE was diagnosed based on a CD138 immunohistochemistry where CE diagnosis was confirmed in the presence of one or more plasma cells. Microbial profiles of women with and without CE were compared in both sample types separately. RESULTS: We report no differences in the microbial composition and alpha diversity (pObserved = 0.07, pShannon = 0.65, pInverse Simpson = 0.59) between the EF and ET samples of IVF patients. We show that the abundance of the genus Lactobacillus influences the variation in microbial beta diversity between and fluid samples (r2 = 0.34; false discovery rate [FDR] <9.9 × 10-5 ). We report that 32% (8/25) of the participants had differences in Lactobacillus dominance in the paired samples and these samples also present a different microbial diversity (pShannon = 0.06, FDRweighted UniFrac = 0.01). These results suggest that the microbial differences between ET and fluid samples are driven by the abundance of genus Lactobacillus. The microbiome of CE and without CE (ie non-CE) women in our sample set of IVF patients was similar. CONCLUSIONS: Our findings show that genus Lactobacillus dominance is an important factor influencing the microbial composition of ET and fluid samples.
Assuntos
Endometrite/microbiologia , Endométrio/microbiologia , Fertilização in vitro , Lactobacillus/isolamento & purificação , Adulto , Estudos de Coortes , Endometrite/patologia , Endométrio/patologia , Feminino , Humanos , Falha de TratamentoRESUMO
L-alpha glycerylphosphorylcholine (GPC), a nutritional supplement, has been demonstrated to improve neurological function. However, a new study suggests that GPC supplementation increases incident stroke risk thus its potential adverse effects warrant further investigation. Here we show that GPC promotes atherosclerosis in hyperlipidemic Apoe-/- mice. GPC can be metabolized to trimethylamine N-oxide, a pro-atherogenic agent, suggesting a potential molecular mechanism underlying the observed atherosclerosis progression. GPC supplementation shifted the gut microbial community structure, characterized by increased abundance of Parabacteroides, Ruminococcus, and Bacteroides and decreased abundance of Akkermansia, Lactobacillus, and Roseburia, as determined by 16S rRNA gene sequencing. These data are consistent with a reduction in fecal and cecal short chain fatty acids in GPC-fed mice. Additionally, we found that GPC supplementation led to an increased relative abundance of choline trimethylamine lyase (cutC)-encoding bacteria via qPCR. Interrogation of host inflammatory signaling showed that GPC supplementation increased expression of the proinflammatory effectors CXCL13 and TIMP-1 and activated NF-κB and MAPK signaling pathways in human coronary artery endothelial cells. Finally, targeted and untargeted metabolomic analysis of murine plasma revealed additional metabolites associated with GPC supplementation and atherosclerosis. In summary, our results show GPC promotes atherosclerosis through multiple mechanisms and that caution should be applied when using GPC as a nutritional supplement.
Assuntos
Aterosclerose/etiologia , Glicerilfosforilcolina/efeitos adversos , Glicerilfosforilcolina/metabolismo , Animais , Apolipoproteínas E/genética , Aterosclerose/induzido quimicamente , Aterosclerose/metabolismo , Ceco/metabolismo , Ceco/microbiologia , Linhagem Celular , Suplementos Nutricionais/efeitos adversos , Células Endoteliais/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Glicerilfosforilcolina/farmacologia , Humanos , Masculino , Metilaminas/efeitos adversos , Metilaminas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismoRESUMO
Genetics provides a potentially powerful approach to dissect host-gut microbiota interactions. Toward this end, we profiled gut microbiota using 16s rRNA gene sequencing in a panel of 110 diverse inbred strains of mice. This panel has previously been studied for a wide range of metabolic traits and can be used for high-resolution association mapping. Using a SNP-based approach with a linear mixed model, we estimated the heritability of microbiota composition. We conclude that, in a controlled environment, the genetic background accounts for a substantial fraction of abundance of most common microbiota. The mice were previously studied for response to a high-fat, high-sucrose diet, and we hypothesized that the dietary response was determined in part by gut microbiota composition. We tested this using a cross-fostering strategy in which a strain showing a modest response, SWR, was seeded with microbiota from a strain showing a strong response, A×B19. Consistent with a role of microbiota in dietary response, the cross-fostered SWR pups exhibited a significantly increased response in weight gain. To examine specific microbiota contributing to the response, we identified various genera whose abundance correlated with dietary response. Among these, we chose Akkermansia muciniphila, a common anaerobe previously associated with metabolic effects. When administered to strain A×B19 by gavage, the dietary response was significantly blunted for obesity, plasma lipids, and insulin resistance. In an effort to further understand host-microbiota interactions, we mapped loci controlling microbiota composition and prioritized candidate genes. Our publicly available data provide a resource for future studies.
Assuntos
Microbioma Gastrointestinal/genética , Animais , Dieta , Dieta Hiperlipídica , Meio Ambiente , Feminino , Estudo de Associação Genômica Ampla , Hereditariedade , Masculino , Camundongos , Camundongos Endogâmicos , Obesidade/microbiologia , RNA Ribossômico 16S , Sacarose/metabolismoRESUMO
One approach to understanding gut microbiome-host interactions, described in this review, is to examine how natural variation in a model organism, where environmental factors can be controlled, affects the microbiome and, in turn, how the microbiome is associated with physiological or clinical traits. A variation of this approach, termed "systems genetics" is to characterize both the microbiome and the host using various high throughput technologies, such as metabolomics or gene expression of the microbiome and the host. By relating variation in the microbiome and host functions to such "molecular phenotypes", hypotheses can be generated and then experimentally tested. To model human gut microbiome-host interactions in this way, the mouse is particularly useful given the extensive body of genetic resources and experimental tools that are available.
RESUMO
Recent studies indicate both clinical and mechanistic links between atherosclerotic heart disease and intestinal microbial metabolism of certain dietary nutrients producing trimethylamine N-oxide (TMAO). Here we test the hypothesis that gut microbial transplantation can transmit choline diet-induced TMAO production and atherosclerosis susceptibility. First, a strong association was noted between atherosclerotic plaque and plasma TMAO levels in a mouse diversity panel (n = 22 strains, r = 0.38; p = 0.0001). An atherosclerosis-prone and high TMAO-producing strain, C57BL/6J, and an atherosclerosis-resistant and low TMAO-producing strain, NZW/LacJ, were selected as donors for cecal microbial transplantation into apolipoprotein e null mice in which resident intestinal microbes were first suppressed with antibiotics. Trimethylamine (TMA) and TMAO levels were initially higher in recipients on choline diet that received cecal microbes from C57BL/6J inbred mice; however, durability of choline diet-dependent differences in TMA/TMAO levels was not maintained to the end of the study. Mice receiving C57BL/6J cecal microbes demonstrated choline diet-dependent enhancement in atherosclerotic plaque burden as compared with recipients of NZW/LacJ microbes. Microbial DNA analyses in feces and cecum revealed transplantation of donor microbial community features into recipients with differences in taxa proportions between donor strains that were transmissible to recipients and that tended to show coincident proportions with TMAO levels. Proportions of specific taxa were also identified that correlated with plasma TMAO levels in donors and recipients and with atherosclerotic lesion area in recipients. Atherosclerosis susceptibility may be transmitted via transplantation of gut microbiota. Gut microbes may thus represent a novel therapeutic target for modulating atherosclerosis susceptibility.
Assuntos
Aterosclerose/microbiologia , Ceco/microbiologia , Suscetibilidade a Doenças/microbiologia , Trato Gastrointestinal/microbiologia , Microbiota/fisiologia , Animais , Aorta/metabolismo , Aorta/patologia , Aterosclerose/sangue , Aterosclerose/etiologia , Colina/administração & dosagem , Dieta/efeitos adversos , Suscetibilidade a Doenças/sangue , Suscetibilidade a Doenças/complicações , Feminino , Interações Hospedeiro-Patógeno , Humanos , Masculino , Metilaminas/sangue , Metilaminas/metabolismo , Camundongos Endogâmicos AKR , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Endogâmicos DBA , Camundongos Endogâmicos , Camundongos Knockout , Camundongos Transgênicos , Especificidade da EspécieRESUMO
CDH13 encodes T-cadherin, a receptor for high molecular weight (HMW) adiponectin and low-density lipoprotein, promoting proliferation and migration of endothelial cells. Genome-wide association studies have mapped multiple variants in CDH13 associated with cardiometabolic traits (CMT) with variable effects across studies. We hypothesized that this heterogeneity might reflect interplay with DNA methylation within the region. Resequencing and EpiTYPER™ assay were applied for the HYPertension in ESTonia/Coronary Artery Disease in Czech (HYPEST/CADCZ; n = 358) samples to identify CDH13 promoter SNPs acting as methylation Quantitative Trait Loci (meQTLs) and to investigate their associations with CMT. In silico data were extracted from genome-wide DNA methylation and genotype datasets of the population-based sample Estonian Genome Center of the University of Tartu (EGCUT; n = 165). HYPEST-CADCZ meta-analysis identified a rare variant rs113460564 as highly significant meQTL for a 134-bp distant CpG site (P = 5.90 × 10(-6); ß = 3.19%). Four common SNPs (rs12443878, rs12444338, rs62040565, rs8060301) exhibited effect on methylation level of up to 3 neighboring CpG sites in both datasets. The strongest association was detected in EGCUT between rs8060301 and cg09415485 (false discovery rate corrected P value = 1.89 × 10(-30)). Simultaneously, rs8060301 showed association with diastolic blood pressure, serum high-density lipoprotein and HMW adiponectin (P < 0.005). Novel strong associations were identified between rare CDH13 promoter meQTLs (minor allele frequency <5%) and HMW adiponectin: rs2239857 (P = 5.50 × 10(-5), ß = -1,841.9 ng/mL) and rs77068073 (P = 2.67 × 10(-4), ß = -2,484.4 ng/mL). Our study shows conclusively that CDH13 promoter harbors meQTLs associated with CMTs. It paves the way to deeper understanding of the interplay between DNA variation and methylation in susceptibility to common diseases.
Assuntos
Pressão Sanguínea/genética , Caderinas/genética , Metilação de DNA , Regiões Promotoras Genéticas , Adiponectina/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Frequência do Gene , Estudos de Associação Genética , Pleiotropia Genética , Humanos , Hipertensão/sangue , Hipertensão/genética , Lipoproteínas HDL/sangue , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Análise de Sequência de DNA , Adulto JovemRESUMO
Raised blood pressure (BP) is a major risk factor for cardiovascular disease. Previous studies have identified 47 distinct genetic variants robustly associated with BP, but collectively these explain only a few percent of the heritability for BP phenotypes. To find additional BP loci, we used a bespoke gene-centric array to genotype an independent discovery sample of 25,118 individuals that combined hypertensive case-control and general population samples. We followed up four SNPs associated with BP at our p < 8.56 × 10(-7) study-specific significance threshold and six suggestively associated SNPs in a further 59,349 individuals. We identified and replicated a SNP at LSP1/TNNT3, a SNP at MTHFR-NPPB independent (r(2) = 0.33) of previous reports, and replicated SNPs at AGT and ATP2B1 reported previously. An analysis of combined discovery and follow-up data identified SNPs significantly associated with BP at p < 8.56 × 10(-7) at four further loci (NPR3, HFE, NOS3, and SOX6). The high number of discoveries made with modest genotyping effort can be attributed to using a large-scale yet targeted genotyping array and to the development of a weighting scheme that maximized power when meta-analyzing results from samples ascertained with extreme phenotypes, in combination with results from nonascertained or population samples. Chromatin immunoprecipitation and transcript expression data highlight potential gene regulatory mechanisms at the MTHFR and NOS3 loci. These results provide candidates for further study to help dissect mechanisms affecting BP and highlight the utility of studying SNPs and samples that are independent of those studied previously even when the sample size is smaller than that in previous studies.
Assuntos
Loci Gênicos , Hipertensão/genética , Análise de Sequência com Séries de Oligonucleotídeos , Adulto , Idoso , Pressão Sanguínea/genética , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Frequência do Gene , Estudo de Associação Genômica Ampla , Haplótipos , Humanos , Desequilíbrio de Ligação , Masculino , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Pessoa de Meia-Idade , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Polimorfismo de Nucleotídeo Único , Receptores do Fator Natriurético Atrial/genética , Análise de Sequência de DNARESUMO
The co-occurrence of multiple chronic conditions, termed multimorbidity, presents an expanding global health challenge, demanding effective diagnostics and treatment strategies. Chronic ailments such as obesity, diabetes, and cardiovascular diseases have been linked to metabolites interacting between the host and microbiota. In this study, we investigated the impact of co-existing conditions on risk estimations for 1375 plasma metabolites in 919 individuals from population-based Estonian Biobank cohort using liquid chromatography mass spectrometry (LC-MS) method. We leveraged annually linked national electronic health records (EHRs) data to delineate comorbidities in incident cases and controls for the 14 common chronic conditions. Among the 254 associations observed across 13 chronic conditions, we primarily identified disease-specific risk factors (92%, 217/235), with most predictors (93%, 219/235) found to be related to the gut microbiome upon cross-referencing recent literature data. Accounting for comorbidities led to a reduction of common metabolite predictors across various conditions. In conclusion, our study underscores the potential of utilizing biobank-linked retrospective and prospective EHRs for the disease-specific profiling of diverse multifactorial chronic conditions.
Assuntos
Comorbidade , Metabolômica , Humanos , Metabolômica/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Microbioma Gastrointestinal , Adulto , Registros Eletrônicos de Saúde , Cromatografia Líquida , Doença Crônica , Fatores de Risco , Estônia/epidemiologiaRESUMO
Recent studies highlight the presence of bacterial sequences in the human blood, suggesting potential clinical significance for circulating microbial signatures. These sequences could presumably serve in the diagnosis, prediction, or monitoring of various health conditions. Ensuring the similarity of samples before bacterial analysis is crucial, especially when combining samples from different biobanks prepared under varying conditions (such as different DNA extraction kits, centrifugation conditions, blood collection tubes, etc.). In this study, we aimed to analyze the impact of different sample collection and nucleic acid extraction criteria (blood collection tube, centrifugation, input volume, and DNA extraction kit) on circulating bacterial composition. Blood samples from four healthy individuals were collected into three different sample collection tubes: K2EDTA plasma tube, sodium citrate plasma tube, and gel tube for blood serum. Tubes were centrifugated at standard and double centrifugation conditions. DNA extraction was performed using 100, 200, and 500 µL plasma/serum input volumes. DNA extraction was performed using three different isolation kits: Norgen plasma/serum cell-free circulating DNA purification micro kit, Applied Biosystems MagMAX cell-free DNA isolation kit, and Qiagen QIAamp MinElute cell-free circulating DNA mini kit. All samples were subjected to 16S rRNA V1-V2 library preparation and sequencing. In total, 216 DNA and 18 water control samples were included in the study. According to PERMANOVA, PCoA, Mann-Whitney, and FDR tests the effect of the DNA extraction kit on the microbiota composition was the greatest, whereas the type of blood collection tube, centrifugation type, and sample input volume for the extraction had minor effects. Samples extracted with the Norgen DNA extraction kit were enriched with Gram-negative bacteria, whereas samples extracted with the Qiagen and MagMAX kits were enriched with Gram-positive bacteria. Bacterial profiles of samples prepared with the Qiagen and MagMAX DNA extraction kits were more similar, whereas samples prepared with the Norgen DNA extraction kit were significantly different from other groups.
Assuntos
Bancos de Espécimes Biológicos , Ácidos Nucleicos Livres , DNA Bacteriano , RNA Ribossômico 16S , Humanos , RNA Ribossômico 16S/genética , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/genética , DNA Bacteriano/sangue , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/isolamento & purificação , Plasma/química , Plasma/microbiologia , Soro/química , Soro/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Manejo de Espécimes/métodos , Coleta de Amostras Sanguíneas/métodos , Análise de Sequência de DNA/métodosRESUMO
Recent evidence indicates that repeated antibiotic usage lowers microbial diversity and ultimately changes the gut microbiota community. However, the physiological effects of repeated - but not recent - antibiotic usage on microbiota-mediated mucosal barrier function are largely unknown. By selecting human individuals from the deeply phenotyped Estonian Microbiome Cohort (EstMB), we here utilized human-to-mouse fecal microbiota transplantation to explore long-term impacts of repeated antibiotic use on intestinal mucus function. While a healthy mucus layer protects the intestinal epithelium against infection and inflammation, using ex vivo mucus function analyses of viable colonic tissue explants, we show that microbiota from humans with a history of repeated antibiotic use causes reduced mucus growth rate and increased mucus penetrability compared to healthy controls in the transplanted mice. Moreover, shotgun metagenomic sequencing identified a significantly altered microbiota composition in the antibiotic-shaped microbial community, with known mucus-utilizing bacteria, including Akkermansia muciniphila and Bacteroides fragilis, dominating in the gut. The altered microbiota composition was further characterized by a distinct metabolite profile, which may be caused by differential mucus degradation capacity. Consequently, our proof-of-concept study suggests that long-term antibiotic use in humans can result in an altered microbial community that has reduced capacity to maintain proper mucus function in the gut.
Assuntos
Antibacterianos , Bactérias , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Muco , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Camundongos , Muco/metabolismo , Muco/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Masculino , Feminino , Fezes/microbiologia , Adulto , Pessoa de Meia-Idade , Akkermansia , Camundongos Endogâmicos C57BL , Colo/microbiologia , Bacteroides fragilis/efeitos dos fármacosRESUMO
We recently reported that levels of unsaturated lysophosphatidic acid (LPA) in the small intestine significantly correlated with the extent of aortic atherosclerosis in LDL receptor-null (LDLRâ»/â») mice fed a Western diet (WD). Here we demonstrate that WD increases unsaturated (but not saturated) LPA levels in the small intestine of LDLRâ»/â» mice and causes changes in small intestine gene expression. Confirmation of microarray analysis by quantitative RT-PCR showed that adding transgenic tomatoes expressing the apoA-I mimetic peptide 6F (Tg6F) to WD prevented many WD-mediated small intestine changes in gene expression. If instead of feeding WD, unsaturated LPA was added to chow and fed to the mice: i) levels of LPA in the small intestine were similar to those induced by feeding WD; ii) gene expression changes in the small intestine mimicked WD-mediated changes; and iii) changes in plasma serum amyloid A, total cholesterol, triglycerides, HDL-cholesterol levels, and the fast-performance liquid chromatography lipoprotein profile mimicked WD-mediated changes. Adding Tg6F (but not control tomatoes) to LPA-supplemented chow prevented the LPA-induced changes. We conclude that: i) WD-mediated systemic inflammation and dyslipidemia may be in part due to WD-induced increases in small intestine LPA levels; and ii) Tg6F reduces WD-mediated systemic inflammation and dyslipidemia by preventing WD-induced increases in LPA levels in the small intestine.
Assuntos
Dieta/efeitos adversos , Dislipidemias/etiologia , Dislipidemias/prevenção & controle , Intestino Delgado/metabolismo , Lisofosfolipídeos/metabolismo , Peptidomiméticos/metabolismo , Solanum lycopersicum/genética , Animais , Apolipoproteína A-I/metabolismo , Dislipidemias/sangue , Dislipidemias/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/sangue , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/prevenção & controle , Intestino Delgado/efeitos dos fármacos , Lisofosfolipídeos/administração & dosagem , Lisofosfolipídeos/sangue , Lisofosfolipídeos/farmacologia , Camundongos , Plantas Geneticamente Modificadas , Receptores de LDL/deficiência , OcidenteRESUMO
Studies have proven the significance of microbial communities in various parts of the human body for health. In recent years it has been discovered that the uterine cavity is not sterile, and endometrium has its own microbiome which appears to have an impact on female fertility and gynecological pathologies. Lactobacillus has shown to dominate the microbial profile in the uterus and is considered an indicator of a healthy uterine environment. Yet, many argue that the Lactobacillus dominance is due to vaginal contamination during the sampling process. To date there is no clearly defined healthy endometrial microbial profile, which is largely due to the fact that determining the microbial community from the endometrium is complicated, and there is currently no consensus on sampling methods for the endometrial microbiome. As a result, this restricts ability to replicate discoveries made in other cohorts. Here we aim to give an overview of the sampling methods used and discuss what impedes the endometrial microbiome studies as well as how to reach a consensus on the study design. This knowledge could be incorporated into the future research and the knowledge on endometrial microbiome could be included into the diagnostics and treatment of female reproductive health.
Assuntos
Infertilidade , Microbiota , Feminino , Humanos , Útero , Endométrio , Infertilidade/terapia , VaginaRESUMO
Human gut microbiome is subject to high inter-individual and temporal variability, which complicates building microbiome-based applications, including applications that can be used to improve public health. Categorizing the microbiome profiles into a small number of distinct clusters, such as enterotyping, has been proposed as a solution that can ameliorate these shortcomings. However, the clinical relevance of the enterotypes is poorly characterized despite a few studies marking the potential for using the enterotypes for disease diagnostics and personalized nutrition. To gain a further understanding of the clinical relevance of the enterotypes, we used the Estonian microbiome cohort dataset (n = 2,506) supplemented with diagnoses and drug usage information from electronic health records to assess the possibility of using enterotypes for disease diagnostics, detecting disease subtypes, and evaluating the susceptibility for developing a condition. In addition to the previously established 3-cluster enterotype model, we propose a 5-cluster community type model based on our data, which further separates the samples with extremely high Bacteroides and Prevotella abundances. Collectively, our systematic analysis including 231 phenotypic factors, 62 prevalent diseases, and 33 incident diseases greatly expands the knowledge about the enterotype-specific characteristics; however, the evidence suggesting the practical use of enterotypes in clinical practice remains scarce.
RESUMO
Microbiome research is starting to move beyond the exploratory phase towards interventional trials and therefore well-characterized cohorts will be instrumental for generating hypotheses and providing new knowledge. As part of the Estonian Biobank, we established the Estonian Microbiome Cohort which includes stool, oral and plasma samples from 2509 participants and is supplemented with multi-omic measurements, questionnaires, and regular linkages to national electronic health records. Here we analyze stool data from deep metagenomic sequencing together with rich phenotyping, including 71 diseases, 136 medications, 21 dietary questions, 5 medical procedures, and 19 other factors. We identify numerous relationships (n = 3262) with different microbiome features. In this study, we extend the understanding of microbiome-host interactions using electronic health data and show that long-term antibiotic usage, independent from recent administration, has a significant impact on the microbiome composition, partly explaining the common associations between diseases.
Assuntos
Bases de Dados Factuais , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Metagenoma/genética , Antibacterianos/uso terapêutico , Disbiose/induzido quimicamente , Disbiose/microbiologia , Registros Eletrônicos de Saúde , Estônia , Humanos , Preparações Farmacêuticas , Inquéritos e QuestionáriosRESUMO
Mutations in WNK1 and WNK4 cause familial hypertension, the Gordon syndrome. WNK1 and WNK4 conserved noncoding regions were targeted to polymorphism screening using DHPLC and DGGE. The scan identified an undescribed polymorphic AluYb8 insertion in WNK1 intron 10. Screening in primates revealed that this Alu-insertion has probably occurred in human lineage. Genotyping in 18 populations from Europe, Asia, and Africa (n = 854) indicated an expansion of the WNK1 AluYb8 bearing chromosomes out of Africa. The allele frequency in Sub-Saharan Africa was ~3.3 times lower than in other populations (4.8 vs. 15.8%; P = 9.7 × 10(-9) ). Meta-analysis across three European sample sets (n = 3,494; HYPEST, Estonians; BRIGHT, the British; CADCZ, Czech) detected significant association of the WNK1 AluYb8 insertion with blood pressure (BP; systolic BP, P = 4.03 × 10(-3) , effect 1.12; diastolic BP, P = 1.21 × 10(-2) , effect 0.67). Gender-stratified analysis revealed that this effect might be female-specific (n = 2,088; SBP, P = 1.99 × 10(-3) , effect 1.59; DBP P = 3.64 × 10(-4) , effect 1.23; resistant to Bonferroni correction), whereas no statistical support was identified for the association with male BP (n = 1,406). In leucocytes, the expressional proportions of the full-length WNK1 transcript and the splice-form skipping exon 11 were significantly shifted in AluYb8 carriers compared to noncarriers. The WNK1 AluYb8 insertion might affect human BP via altering the profile of alternatively spliced transcripts.