Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Methods ; 17(10): 1052-1059, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32994566

RESUMO

Accurate tracking and analysis of animal behavior is crucial for modern systems neuroscience. However, following freely moving animals in naturalistic, three-dimensional (3D) or nocturnal environments remains a major challenge. Here, we present EthoLoop, a framework for studying the neuroethology of freely roaming animals. Combining real-time optical tracking and behavioral analysis with remote-controlled stimulus-reward boxes, this system allows direct interactions with animals in their habitat. EthoLoop continuously provides close-up views of the tracked individuals and thus allows high-resolution behavioral analysis using deep-learning methods. The behaviors detected on the fly can be automatically reinforced either by classical conditioning or by optogenetic stimulation via wirelessly controlled portable devices. Finally, by combining 3D tracking with wireless neurophysiology we demonstrate the existence of place-cell-like activity in the hippocampus of freely moving primates. Taken together, we show that the EthoLoop framework enables interactive, well-controlled and reproducible neuroethological studies in large-field naturalistic settings.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/fisiologia , Lemuridae/fisiologia , Monitorização Fisiológica/veterinária , Neurofisiologia/instrumentação , Animais , Automação , Condicionamento Operante , Camundongos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Optogenética , Tecnologia sem Fio
2.
eNeuro ; 7(5)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32887692

RESUMO

Transforming growth factor (TGF)ß1 has repeatedly been associated with axonal regeneration and recovery after injury to the CNS. We found TGFß1 upregulated in the stroke-denervated mouse spinal cord after ischemic injury to the motor cortex as early as 4 d postinjury (dpi) and persisting up to 28 dpi. Given the potential role of TGFß1 in structural plasticity and functional recovery after stroke highlighted in several published studies, we investigated its downstream signaling in an in vitro model of neurite outgrowth. We found that in this model, TGFß1 rescues neurite outgrowth under growth inhibitory conditions via the canonical TGFßR2/ALK5 signaling axis. Thereby, protein kinase A (PKA)-mediated phosphorylation of the E3 ubiquitin ligase SMURF1 induces a switch of its substrate preference from PAR6 to the Ras homolog A (RhoA), in this way enhancing outgrowth on the level of the cytoskeleton. This proposed mechanism of TGFß1 signaling could underly the observed increase in structural plasticity after stroke in vivo as suggested by the temporal and spatial expression of TGFß1. In accordance with previous publications, this study corroborates the potential of TGFß1 and associated signaling cascades as a target for future therapeutic interventions to enhance structural plasticity and functional recovery for stroke patients.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Crescimento Neuronal , Fator de Crescimento Transformador beta1 , Proteínas Adaptadoras de Transdução de Sinal , Animais , Humanos , Camundongos , Fosforilação , Receptor do Fator de Crescimento Transformador beta Tipo I , Recuperação de Função Fisiológica , Transdução de Sinais , Ubiquitina-Proteína Ligases , Proteína rhoA de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA