Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Soft Matter ; 18(47): 8983-8994, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36383199

RESUMO

The flow-driven transport of interacting micron-sized particles occurs in many soft matter systems spanning from the translocation of proteins to moving emulsions in microfluidic devices. Here we combine experiments and theory to investigate the collective transport properties of colloidal particles along a rotating ring of optical traps. In the corotating reference frame, the particles are driven by a vortex flow of the surrounding fluid. When increasing the depth of the optical potential, we observe a jamming behavior that manifests itself in a strong reduction of the current with increasing particle density. We show that this jamming is caused by hydrodynamic interactions that enhance the energetic barriers between the optical traps. This leads to a transition from an over- to an under-critical tilting of the potential in the corotating frame. Based on analytical considerations, the enhancement effect is estimated to increase with increasing particle size or decreasing radius of the ring of traps. Measurements for different ring radii and Stokesian dynamics simulations for corresponding particle sizes confirm this. The enhancement of potential barriers in the flow-driven system is contrasted to the reduction of barriers in a force-driven one. This diverse behavior demonstrates that hydrodynamic interactions can have a very different impact on the collective dynamics of many-body systems. Applications to soft matter and biological systems require careful consideration of the driving mechanism and of the role of hydrodynamic interactions.

2.
Phys Rev Lett ; 126(18): 188001, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34018772

RESUMO

The effect of boundaries and how these can be used to influence the bulk behavior in geometrically frustrated systems are both long-standing puzzles, often relegated to a secondary role. Here, we use numerical simulations and "proof of concept" experiments to demonstrate that boundaries can be engineered to control the bulk behavior in a colloidal artificial ice. We show that an antiferromagnetic frontier forces the system to rapidly reach the ground state (GS), as opposed to the commonly implemented open or periodic boundary conditions. We also show that strategically placing defects at the corners generates novel bistable states, or topological strings, which result from competing GS regions in the bulk. Our results could be generalized to other frustrated micro- and nanostructures where boundary conditions may be engineered with lithographic techniques.

3.
Phys Rev Lett ; 127(21): 214501, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34860099

RESUMO

Hydrodynamic interactions between fluid-dispersed particles are ubiquitous in soft matter and biological systems and they give rise to intriguing collective phenomena. While it was reported that these interactions can facilitate force-driven particle motion over energetic barriers, here we show the opposite effect in a flow-driven system, i.e., that hydrodynamic interactions hinder transport across barriers. We demonstrate this result by combining experiments and theory. In the experiments, we drive colloidal particles using rotating optical traps, thus creating a vortex flow in the corotating reference frame. We observe a jamminglike decrease of particle currents with density for large barriers between traps. The theoretical model shows that this jamming arises from hydrodynamic interactions between the particles. The impact of hydrodynamic interactions is reversed compared to force-driven motion, suggesting that our findings are a generic feature of flow-driven transport.

4.
Phys Rev Lett ; 124(23): 238003, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32603179

RESUMO

Recovery of ground-state degeneracy in two-dimensional square ice is a significant challenge in the field of geometric frustration with far-reaching fundamental implications, such as realization of vertex models and understanding the effect of dimensionality reduction. We combine experiments, theory, and numerical simulations to demonstrate that sheared square colloidal ice partially recovers the ground-state degeneracy for a wide range of field strengths and lattice shear angles. Our method could inspire engineering a novel class of frustrated microstructures and nanostructures based on sheared magnetic lattices in a wide range of soft- and condensed-matter systems.

5.
Soft Matter ; 16(41): 9423-9435, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32914813

RESUMO

Based on (overdamped) Stokesian dynamics simulations and video microscopy experiments, we study the non equilibrium dynamics of a sheared colloidal cluster, which is confined to a two-dimensional disk. The experimental system is composed of a mixture of paramagnetic and non magnetic polystyrene particles, which are held in the disk by time shared optical tweezers. The paramagnetic particles are located at the center of the disk and are actuated by an external, rotating magnetic field that induces a magnetic torque. We identify two different steady states by monitoring the mean angular velocities per ring. The first one is characterized by rare slip events, where the inner rings momentarily depin from the outer ring, which is kept static by the set of optical traps. For the second state, we find a bistability of the mean angular velocities, which can be understood from the analysis of the slip events in the particle trajectories. We calculate the particle waiting- and jumping time distributions and estimate a time scale between slips, which is also reflected by a plateau in the mean squared azimuthal displacement. The dynamical transition is further reflected by the components of the stress tensor, revealing a shear-thinning behavior as well as shear stress overshoots. Finally, we briefly discuss the observed transition in the context of stochastic thermodynamics and how it may open future directions in this field.

6.
Soft Matter ; 16(28): 6673-6682, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32627785

RESUMO

In this manuscript we describe the realization of a minimal hybrid microswimmer, composed of a ferromagnetic nanorod and a paramagnetic microsphere. The unbounded pair is propelled in water upon application of a swinging magnetic field that induces a periodic relative movement of the two composing elements, where the nanorod rotates and slides on the surface of the paramagnetic sphere. When taken together, the processes of rotation and sliding describe a finite area in the parameter space, which increases with the frequency of the applied field. We develop a theoretical approach and combine it with numerical simulations, which allow us to understand the dynamics of the propeller and explain the experimental observations. Furthermore, we demonstrate a reversal of the microswimmer velocity by varying the length of the nanorod, as predicted by the model. Finally, we determine theoretically and in experiments the Lighthill's energetic efficiency of this minimal magnetic microswimmer.

7.
Soft Matter ; 14(24): 5121-5129, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29877539

RESUMO

We investigate the dynamics and rheological properties of a circular colloidal cluster that is continuously sheared by magnetic and optical torques in a two-dimensional (2D) Taylor-Couette geometry. By varying the two driving fields, we obtain the system flow diagram and report the velocity profiles along the colloidal structure. We then use the inner magnetic trimer as a microrheometer, and observe continuous thinning of all particle layers followed by thickening of the third one above a threshold field. Experimental data are supported by Brownian dynamics simulations. Our approach gives a unique microscopic view on how the structure of strongly confined colloidal matter weakens or strengthens upon shear, envisioning the engineering of rheological devices at the microscales.

8.
Phys Rev Lett ; 117(16): 168001, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27792372

RESUMO

We study the defect dynamics in a colloidal spin ice system realized by filling a square lattice of topographic double well islands with repulsively interacting magnetic colloids. We focus on the contraction of defects in the ground state, and contraction or expansion in a metastable biased state. Combining real-time experiments with simulations, we prove that these defects behave like emergent topological monopoles obeying a Coulomb law with an additional line tension. We further show how to realize a completely resettable "nor" gate, which provides guidelines for fabrication of nanoscale logic devices based on the motion of topological magnetic monopoles.

9.
Phys Rev Lett ; 115(13): 138301, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26451584

RESUMO

We study propulsion arising from microscopic colloidal rotors dynamically assembled and driven in a viscous fluid upon application of an elliptically polarized rotating magnetic field. Close to a confining plate, the motion of this self-assembled microscopic worm results from the cooperative flow generated by the spinning particles which act as a hydrodynamic "conveyor belt." Chains of rotors propel faster than individual ones, until reaching a saturation speed at distances where induced-flow additivity vanishes. By combining experiments and theoretical arguments, we elucidate the mechanism of motion and fully characterize the propulsion speed in terms of the field parameters.

10.
Opt Lett ; 39(22): 6545-8, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25490515

RESUMO

Based on angular spectrum engineering, we report the generation of optical lattices whose two-dimensional transverse nondiffracting pattern can be reduced to a quasi-one-dimensional intensity structure formed by either a single or multiple parallel channels. Remarkably, many features for each channel such as its maximum intensity, modulation, width, or separation among channels, can be controlled and modified in order to meet the requirements of particular applications. In particular, we demonstrate that these lattices can provide useful schemes for soliton routing and steering. We demonstrate the existence domain of ground-state solitons for the single quasi-one-dimensional lattice, and we show that these nondiffracting beams allow "push and pull" dynamics among the neighbor solitons propagated along the nondiffracting channels generated.


Assuntos
Fenômenos Ópticos , Engenharia
11.
J Opt Soc Am A Opt Image Sci Vis ; 31(12): 2759-62, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25606766

RESUMO

The trapping and manipulation of microscopic particles embedded in the structure of nondiffracting parabolic beams is reported. The particles acquire orbital angular momentum and exhibit an open trajectory following the parabolic fringes of the beam. We observe an asymmetry in the terminal velocity of the particles caused by the counteracting gradient and scattering forces.

12.
Opt Express ; 21(19): 22221-31, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-24104114

RESUMO

Due to their unique ability to maintain an intensity distribution upon propagation, non-diffracting light fields are used extensively in various areas of science, including optical tweezers, nonlinear optics and quantum optics, in applications where complex transverse field distributions are required. However, the number and type of rigorously non-diffracting beams is severely limited because their symmetry is dictated by one of the coordinate system where the Helmholtz equation governing beam propagation is separable. Here, we demonstrate a powerful technique that allows the generation of a rich variety of quasi-non-diffracting optical beams featuring nearly arbitrary intensity distributions in the transverse plane. These can be readily engineered via modifications of the angular spectrum of the beam in order to meet the requirements of particular applications. Such beams are not rigorously non-diffracting but they maintain their shape over large distances, which may be tuned by varying the width of the angular spectrum. We report the generation of unique spiral patterns and patterns involving arbitrary combinations of truncated harmonic, Bessel, Mathieu, or parabolic beams occupying different spatial domains. Optical trapping experiments illustrate the opto-mechanical properties of such beams.


Assuntos
Pinças Ópticas , Refratometria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
13.
Sci Adv ; 6(10): eaaz2257, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32181362

RESUMO

Controlling the flow of matter down to micrometer-scale confinement is of central importance in material and environmental sciences, with direct applications in nano and microfluidics, drug delivery, and biotechnology. Currents of microparticles are usually generated with external field gradients of different nature (e.g., electric, magnetic, optical, thermal, or chemical ones), which are difficult to control over spatially extended regions and samples. Here, we demonstrate a general strategy to assemble and transport polarizable microparticles in fluid media through combination of confinement and magnetic dipolar interactions. We use a homogeneous magnetic modulation to assemble dispersed particles into rotating dimeric state and frustrated binary lattices, and generate collective currents that arise from a novel, field-synchronized particle exchange process. These dynamic states are similar to cyclotron and skipping orbits in electronic and molecular systems, thus paving the way toward understanding and engineering similar processes at different length scales across condensed matter.

14.
Nanoscale ; 11(40): 18723-18729, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31589226

RESUMO

The realization of artificial microscopic swimmers able to propel in viscous fluids is an emergent research field of fundamental interest and vast technological applications. For certain functionalities, the efficiency of the microswimmer in converting the input power provided through an external actuation into propulsive power output can be critical. Here we use a microswimmer composed by a self-assembled ferromagnetic rod and a paramagnetic sphere and directly determine its swimming efficiency when it is actuated by a swinging magnetic field. Using fast video recording and numerical simulations we fully characterize the dynamics of the propeller and identify the two independent degrees of freedom which allow its propulsion. We then obtain experimentally the Lighthill's energetic efficiency of the swimmer by measuring the power consumed during propulsion and the energy required to translate the propeller at the same speed. Finally, we discuss how the efficiency of our microswimmer could be increased upon suitable tuning of the different experimental parameters.

15.
Sci Adv ; 4(1): eaap9379, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29387795

RESUMO

Hydrodynamic interactions (HIs), namely, solvent-mediated long-range interactions between dispersed particles, play a crucial role in the assembly and dynamics of many active systems, from swimming bacteria to swarms of propelling microrobots. We experimentally demonstrate the emergence of long-living hydrodynamic bound states between model microswimmers at low Reynolds numbers. A rotating magnetic field forces colloidal hematite microparticles to translate at a constant and frequency-tunable speed close to a bounding plane in a viscous fluid. At high driving frequency, HIs dominate over magnetic dipolar ones, and close propelling particles couple into bound states by adjusting their translational speed to optimize the transport of the pair. The physical system is described by considering the HIs with the boundary surface and the effect of gravity, providing an excellent agreement with the experimental data for all the range of parameters explored. Moreover, we show that in dense suspensions, these bound states can be extended to one-dimensional arrays of particles assembled by the sole HIs. Our results manifest the importance of the boundary surface in the interaction and dynamics of confined propelling microswimmers.

16.
Nat Commun ; 9(1): 4146, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297820

RESUMO

Artificial particle ices are model systems of constrained, interacting particles. They have been introduced theoretically to study ice-manifolds emergent from frustration, along with domain wall and grain boundary dynamics, doping, pinning-depinning, controlled transport of topological defects, avalanches, and memory effects. Recently such particle-based ices have been experimentally realized with vortices in nano-patterned superconductors or gravitationally trapped colloids. Here we demonstrate that, although these ices are generally considered equivalent to magnetic spin ices, they can access a novel spectrum of phenomenologies that are inaccessible to the latter. With experiments, theory and simulations we demonstrate that in mixed coordination geometries, entropy-driven negative monopoles spontaneously appear at a density determined by the vertex-mixture ratio. Unlike its spin-based analogue, the colloidal system displays a "fragile ice" manifold, where local energetics oppose the ice rule, which is instead enforced through conservation of the global topological charge. The fragile colloidal ice, stabilized by topology, can be spontaneously broken by topological charge transfer.

17.
Nat Commun ; 7: 10575, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26830629

RESUMO

Artificial spin ice systems, namely lattices of interacting single domain ferromagnetic islands, have been used to date as microscopic models of frustration induced by lattice topology, allowing for the direct visualization of spin arrangements and textures. However, the engineering of frustrated ice states in which individual spins can be manipulated in situ and the real-time observation of their collective dynamics remain both challenging tasks. Inspired by recent theoretical advances, here we realize a colloidal version of an artificial spin ice system using interacting polarizable particles confined to lattices of bistable gravitational traps. We show quantitatively that ice-selection rules emerge in this frustrated soft matter system by tuning the strength of the pair interactions between the microscopic units. Via independent control of particle positioning and dipolar coupling, we introduce monopole-like defects and strings and use loops with defined chirality as an elementary unit to store binary information.

18.
Artigo em Inglês | MEDLINE | ID: mdl-25314404

RESUMO

We investigate the dynamics of single microparticles immersed in water that are driven out of equilibrium in the presence of an additional external colored noise. As a case study, we trap a single polystyrene particle in water with optical tweezers and apply an external electric field with flat spectrum but a finite bandwidth of the order of kHz. The intensity of the external noise controls the amplitude of the fluctuations of the position of the particle and therefore of its effective temperature. Here we show, in two different nonequilibrium experiments, that the fluctuations of the work done on the particle obey the Crooks fluctuation theorem at the equilibrium effective temperature, given that the sampling frequency and the noise cutoff frequency are properly chosen.


Assuntos
Microesferas , Modelos Teóricos , Poliestirenos , Imersão , Pinças Ópticas , Temperatura , Termodinâmica , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA