RESUMO
Recent advancements in computed tomography (CT) scanning have improved the detection rates of peripheral pulmonary nodules, including those with ground-glass opacities (GGOs). This study focuses on part-solid pure ground-glass nodules (GGNs) and aims to identify imaging predictors that can reliably differentiate primary lung cancer from nodules with other diagnoses among part-solid GGNs on high-resolution CT (HRCT). A retrospective study was conducted on 609 patients who underwent surgical treatment or observation for lung nodules. Radiological findings from pre-operative HRCT scans were reviewed and several CT imaging features of part-solid GGNs were examined for their positive predictive value to identify primary lung cancer. The proportions of the nodules with a final diagnosis of primary lung cancer were significantly higher in part-solid GGNs (91.9%) compared with solid nodules (70.3%) or pure GGNs (66.7%). Among CT imaging features of part-solid GGNs that were evaluated, consolidation-to-tumor ratio (CTR) < 0.5 (98.1%), pleural indentation (96.4%), and clear tumor border (96.7%) had high positive predictive value to identify primary lung cancer. When two imaging features were combined, the combination of CTR < 0.5 and a clear tumor border was identified to have 100% positive predictive values with a sensitivity of 40.8%. Thus we conclude that part-solid GGNs with a CTR < 0.5 accompanied by a clear tumor border evaluated by HRCT are very likely to be primary lung cancers with an acceptable sensitivity. Preoperative diagnostic procedures to obtain a pathological diagnosis may potentially be omitted in patients harboring such part-solid GGNs.
Assuntos
Neoplasias Pulmonares , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Estudos Retrospectivos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Nódulo Pulmonar Solitário/patologia , Adulto , Curva ROCRESUMO
A mixed-valence heterometallic nonanuclear [3 × 3] grid complex, [CuI2CuII6FeIII(L)6](BF4)5·MeOH·9H2O (1; MeOH = methanol), was synthesized by a one-pot reaction of copper and iron ions with multidentate ligand 2,6-bis[5-(2-pyridinyl)-1H-pyrazol-3-yl]pyridine (H2L). 1 showed five quasi-reversible one-electron redox processes centered at +0.74, +0.60, +0.39, +0.27, and -0.13 V versus SCE, assignable to four CuI/CuII processes and one FeII/FeIII couple, respectively. The two-electron-oxidized species [CuII8FeIII(L)6](PF6)7·4MeOH·7H2O (12eOx), the two-electron-reduced species [CuI4CuII4FeIII(L)6](PF6)3·2H2O (12eRed), and the three-electron-reduced species [CuI4CuII4FeII(L)6](PF6)2·5MeOH·H2O (13eRed) were isolated electrochemically. The four redox isomers were characterized by single-crystal X-ray analysis, SQUID magnetometry, and Mössbauer spectroscopy.
RESUMO
Colossal and anisotropic thermal expansion is a key function for microscale or nanoscale actuators in material science. Herein, we present a hexanuclear compound of [(Tp*)FeIII (CN)3 ]4 [FeII (Ppmp)]2 â 2 CH3 OH (1, Tp*=hydrotris(3,5-dimethyl-pyrazol-1-yl)borate and Ppmp=2-[3-(2'-pyridyl)pyrazol-1-ylmethyl]pyridine), which has a rhombic core structure abbreviated as {FeIII 2 FeII 2 }. Magnetic susceptibility measurements and single-crystal X-ray diffraction analyses revealed that 1 underwent thermally-induced spin transition with the thermal hysteresis. The FeII site in 1 behaved as a spin crossover (SCO) unit, and significant deformation of its octahedron was observed during the spin transition process. Moreover, the distortion of the FeII centers actuated anisotropic deformation of the rhombic {FeIII 2 FeII 2 } core, which was spread over the whole crystal through the subsequent molecular rearrangements, leading to the colossal anisotropic thermal expansion. Our results provide a rational strategy for realizing the colossal anisotropic thermal expansion and shape memory effects by tuning the magnetic bistability.
RESUMO
Materials showing synergy of magnetic and dielectric transitions are promising candidates for future molecular devices. The challenge is how to realize synergy between spin and dielectric transitions with responses to external stimuli. Herein, we design a 2D spin crossover (SCO) complex, [FeII (dpa)][(pzTp)FeIII (CN)3 ]2 (1) (dpa=1,2-bis(4-pyridyl)ethyne and pzTp=tetrakis(pyrazolyl)borate). The local structural changes about the FeII ion were propagated to the whole crystal through the rigid bridging ligands (dpa), leading to elastic interactions to realize the abrupt SCO and rotational movements of polar apical pyrazolyl rings in the [(pzTp)FeIII (CN)3 ]- units. Dielectric measurements confirmed a substantial dielectric change (Δϵ'=2.3) upon the spin transition. This work provides a rational strategy to couple the spin transition and rotation of polar components, which is crucial for the synergetic switch of magnetism and dielectricity.
RESUMO
Manipulation of multi-functions in molecular materials is promising for future switching and memory devices, although it is currently difficult. Herein, we assembled the asymmetric {Fe2 Co} unit into a cyanide-bridged mixed-valence chain {[(Tp)Fe(CN)3 ]2 Co(BIT)} â 2CH3 OH (1) (Tp=hydrotris(pyrazolyl)borate and BIT=3,4-bis-(1H-imidazol-1-yl)thiophene), which showed reversible multi-phase transitions accompanied by photo-switchable single-chain magnet properties and a dielectric anomaly. Variable-temperature X-ray structural studies revealed thermo- and photo-induced selective electron transfer (ET) between the Co and one of the Fe ions. Alternating-current magnetic susceptibility studies revealed that 1 displayed on and off single-chain magnet behavior by alternating 946-nm and 532-nm light irradiation. A substantial anomaly in the dielectric constant was discovered during the electron transfer process, which is uncommon in similar ET complexes. These findings illustrate that 1 provided a new platform for multi-phase transitions and multi-switches adjusted by selective metal-to-metal ET.
RESUMO
Molecular materials possessing photo-tunable polarization switching is promising for optical switches, smart sensors, and data storage devices. However, it is challenging to devise a molecular material featuring simultaneous switchable magnetic and dielectric properties with regard to non-invasive and convenient light stimulus. Herein, we report a new Hofmann-type metal-organic framework (MOF) {Fe(bpt)[Pt(CN)4 ]} â 0.5anth (1, bpt=2,5-bis(4-pyridyl)thiophen; anth=anthracene), which displays thermo- and photo-switchable magnetic and dielectric properties. Photo-monitored structural analyses revealed that it was the photo-induced deformation of FeII coordination sphere and relative movement of guest anthracene that resulted in the variation of the local electric dipoles. These findings provide a new strategy to realize polarization switching through the light-induced spin crossover, and would be of fundamental significance for future photo-switchable and multifunctional materials.
RESUMO
An octanuclear manganese complex, [MnIII8(µ4-O)4(L)4(OMe)4(OAc)4(OCH2CH2NH3)4] [1; H2L = 3-(dimethoxymethyl)-2-hydroxybenzoic acid], was synthesized with an extended cubane core structure consisting of eight Mn ions bridged by O atoms. Cryomagnetic studies revealed that 1 showed a single-molecule-magnet behavior with an S = 16 spin ground state.
RESUMO
It is promising and challenging to manipulate the electronic structures and functions of materials utilizing both metal-to-metal charge transfer (MMCT) and spin-crossover (SCO) to tune the valence and spin states of metal ions. Herein, a metallocyanate building block is used to link with a FeII -triazole moiety and generates a mixed-valence complex {[(Tp4-Me )FeIII (CN)3 ]9 [FeII 4 (trz-ph)6 ]}â [Ph3 PMe]2 â [(Tp4-Me )FeIII (CN)3 ] (1; trz-ph=4-phenyl-4H-1,2,4-triazole). Moreover, MMCT occurs between FeIII and one of the FeII sites after heat treatment, resulting in the generation of a new phase, {[(Tp4-Me )FeII (CN)3 ][(Tp4-Me )FeIII (CN)3 ]8 [FeIII FeII 3 (trz-ph)6 ]}â [Ph3 PMe]2 â [(Tp4-Me )FeIII (CN)3 ] (1 a). Structural and magnetic studies reveal that MMCT can tune the two-step SCO behavior of 1 into one-step SCO behavior of 1 a. Our work demonstrates that the integration of MMCT and SCO can provide a new alternative for manipulating functional spin-transition materials with accessible multi-electronic states.
RESUMO
A hydrogen-bonding donor-acceptor system, [Co2 Fe2 (bpy*)4 (CN)6 (tp*)2 ](PF6 )2 â 2ABAâ 4BNâ 2PE (1 solv ), was prepared by co-crystallization of an external stimuli-responsive cyanide-bridged tetranuclear [Co2 Fe2 ] complex and bifunctional hydrogen-bonding donors, p-aminobenzoic acid. Compound 1 solv exhibited a gradual electron-transfer-coupled spin transition (ETCST), and the removal of solvent molecules led to an abrupt thermal ETCST behavior with increased transition temperature. X-ray structural analysis revealed that the modification of ETCST was caused by a significant alteration of a hydrogen-bonding mode between the tetranuclear [Co2 Fe2 ]2+ cations and ABA molecules. Variable temperature IR measurements indicated that the desolvated form, 1 desolv , showed dynamic alteration of hydrogen-bonding interactions coupled with thermal ETCST behavior. These results suggested that the tetranuclear [Co2 Fe2 ] complex shows solid-state modulations of hydrogen-bond strengths by external stimuli.
RESUMO
Discrete cyanide-bridged Co-Fe multinuclear complexes can be considered as functional units of bulk Co-Fe Prussian blue analogues, and they have been recognized as a new class of switching molecules in the last decade. The switching property of the cyanide-bridged Co-Fe complexes is based on intramolecular electron transfers between Co and Fe ions, and we herein refer to this phenomenon as an electron transfer-coupled spin transition (ETCST). Although there have been numerous reports on the complexes exhibiting ETCST behavior, the systematic study of the substituent effects on the thermal ETCST equilibrium in solution has not been reported yet, and the rational control of the equilibrium temperature remains challenging. We report here the syntheses and thermal ETCST behavior both in the solid state and solution for a series of tetranuclear [Co2Fe2] complexes, [Co2Fe2(CN)6(L1)2(L2)4]X2 (L1 and L2: tri- and bidentate capping ligands for Fe and Co ions, X: counteranions). All complexes showed thermal ETCST equilibrium between high-spin ([(hs-CoII)2(ls-FeIII)2]) and low-spin ([(ls-CoIII)2(ls-FeII)2]) states in butyronitrile, and the equilibrium temperatures (T1/2) showed systematic shifts by chemical modifications and chemical stimuli. The T1/2 values were correlated with the redox potential differences (ΔE) of the Fe and Co ions in the constituent units, and the larger ΔE values led to the lower T1/2. The present result suggests that the thermal ETCST behavior in solution can be rationally designed by considering the redox potentials of the constituent molecules.
RESUMO
A mononuclear FeII complex, prepared with a Brønsted diacid ligand, H2 L (H2 L=2-[5-phenyl-1H-pyrazole-3-yl] 6-benzimidazole pyridine), shows switchable physical properties and was isolated in five different electronic states. The spin crossover (SCO) complex, [FeII (H2 L)2 ](BF4 )2 (1A ), exhibits abrupt spin transition at T1/2 =258â K, and treatment with base yields a deprotonated analogue [FeII (HL)2 ] (1B ), which shows gradual SCO above 350â K. A range of FeIII analogues were also characterized. [FeIII (HL)(H2 L)](BF4 )Cl (1C ) has an S=5/2 spin state, while the deprotonated complexes [FeIII (L)(HL)], (1D ), and (TEA)[FeIII (L)2 ], (1E ) exist in the low-spin S=1/2 state. The electronic properties of the five complexes were fully characterized and we demonstrate inâ situ switching between multiple states in both solution and the solid-state. The versatility of this simple mononuclear system illustrates how proton donor/acceptor ligands can vastly increase the range of accessible states in switchable molecular devices.
RESUMO
Access to asymmetrically functionalized polyoxometalates is a grand challenge as it could lead to new molecular nanomaterials with multiple or modular functionality. Now, a simple one-pot synthetic approach to the isolation of an asymmetrically functionalized organic-inorganic hybrid Wells-Dawson polyoxometalate in good yield is presented. The cluster bears two organophosphonate moieties with contrasting physical properties: a chelating metal-binding group, and a long aliphatic chain that facilitates solvent-dependent self-assembly into soft nanostructures. The orthogonal properties of the modular system are effectively demonstrated by controlled assembly of POM-based redox-active nanoparticles. This simple, high-yielding synthetic method is a promising new approach to the preparation of multi-functional hybrid metal oxide clusters, supermolecular systems, and soft-nanomaterials.
RESUMO
We report three self-assembled iron complexes that comprised an anti-parallel open form (o-Lanti ), a parallel open form (o-Lsyn ), and a closed form (c-L) of diarylethene conformers. Under kinetic control, FeII 2 (o-Lanti )3 was isolated, which exhibited a dinuclear structure with diamagnetic properties. Under light-irradiation control, FeII 2 (c-L)3 was prepared and exhibited paramagnetism and spin-crossover behaviour. Under thermodynamic control and in the presence of indispensable [FeIII (Tp*)(CN)3 ]- , FeII 2 (o-Lanti )3 and FeII 2 (c-L)3 transformed into tetranuclear FeIII 2 FeII 2 (o-Lsyn )2 , which exhibited complete spin-crossover behaviour at T1/2 =353â K.
RESUMO
Understanding the effects of intermolecular interactions on metal-to-metal charge transfer (MMCT) is crucial to develop molecular devices by grafting MMCT-based molecular arrays. Herein, we report a series of solvent-free {Fe2 Co2 } compounds sharing the same cationic tetranuclear {[Fe(PzTp)(CN)3 ]2 [Co(dpq)2 ]2 }2+ (PzTp- =tetrakis(pyrazolyl)borate, dpq=dipyrido[3,2-d:2',3'-f]quinoxaline) square units but having anions with different size, including BF4 - , PF6 - , OTf- , and [Fe(PzTp)(CN)3 ]- . Intermolecular πâ â â π interactions between dpq ligands, which coordinate to cobalt ions in the {[Fe(PzTp)(CN)3 ]2 [Co(dpq)2 ]2 }2+ units, can be modulated by introducing different counterions, regulating the distortion of the CoN6 octahedron and ligand field around the cobalt ions. This change results in different MMCT behavior. Computational analyzes reveal the substantial role of the intermolecular interactions tuned by the presence of different counteranions on the MMCT behavior.
RESUMO
Metal oxides with sizes of a few nanometers show variable crystal and electronic structures depending on their dimensions, and the synthesis of metal oxide particles with a desired size is a key technology in materials science. Although discrete metal oxide particles with an average diameter ( d) smaller than 2 nm are expected to show size-specific properties, such ultrasmall metal oxide particles are significantly limited in number. In nature, on the other hand, nanosized ferrihydrite (Fh), which is ferric oxyhydroxide, occurs as a result of biomineralization in ferritin, an iron storage protein cage. Here we describe the synthesis of Fh particles using a covalent molecular organic cage (MOC) derived from 8 + 12 cyclocondensation of triaminocyclohexane with a diformylphenol derivative. At the initial reaction stage, eight iron ions accumulated at the metal binding sites in the cage cavity, and Fh particles ( d = 1.9 ± 0.3 nm) encapsulated within the cage (Fh@MOC) formed with a quite narrow size distribution. The formation process of the Fh particle in the organic cage resembles the biomineralization process in the natural iron storage protein, and the present method could be applicable to the synthesis of other metal oxide particles. Fh@MOC is soluble in common organic solvents and shows substantial redox activity in MeCN.
RESUMO
Two carboxyl-substituted iron(II) grids, one protonated, [Fe4(HL)4](BF4)4·4MeCN·AcOEt (1), and the other deprotonated, [Fe4(L)4]·DMSO·EtOH (2), where H2L = 4-{4,5-bis[6-(3,5-dimethylpyrazol-1-yl)pyrid-2-yl]-1 H-imidazol-2-yl}benzoic acid, were synthesized. Single-crystal X-ray structure analyses reveal that both complexes have a tetranuclear [2 × 2] grid structure. 1 formed one-dimensional chains through intermolecular hydrogen bonds between the carboxylic acid units of neighboring grids, while 2 formed two-dimensional layers stabilized by π-π-stacking interactions. 1 showed spin transition between the 3HS-1LS and 1.5HS-2.5LS states around 200 K, while 2 showed spin-crossover between the 4LS and 2LS-2HS states above 300 K. A modified indium-tin oxide (ITO) electrode was fabricated by soaking the ITO in a solution of 1. The resultant electrode showed reversible redox waves attributed to the original redox processes of iron(II)/iron(III).
RESUMO
An iron(III) complex having a dibenzotetraethyltetraamido macrocyclic ligand (DTTM4-), (NEt4)2[FeIII(DTTM)Cl] (1), was synthesized and characterized by crystallographic, spectroscopic, and electrochemical methods. Complex 1 has a square-pyramidal structure in the S = 3/2 spin state. The complex exhibited two reversible redox waves at +0.36 and +0.68 V (vs SCE) in the cyclic voltammogram measured in CH2Cl2 at room temperature. The stepwise oxidation of 1 using chemical oxidants allowed us to observe clear and distinct spectral changes with distinct isosbestic points for each step, in which oxidation occurred at the phenylenediamido moiety rather than the iron center. One-electron oxidation of 1 by 1 equiv of [RuIII(bpy)3](ClO4)3 (bpy = 2,2'-bipyridine) in CH2Cl2 afforded square-pyramidal (NEt4)[Fe(DTTM)Cl] (2), which was in the S = 1 spin state involving a ligand radical and showed a slightly distorted square-pyramidal structure. Complex 2 showed an intervalence charge-transfer band at 900 nm, which was assigned on the basis of time-dependent density functional theory calculations, to indicate that the complex is in a class IIA mixed-valence ligand-radical regime with Hab = 884 cm-1. Two-electron oxidation of 1 by 2 equiv of [(4-Br-Ph)3Nâ¢+](SbCl6) in CH2Cl2 afforded two-electron-oxidized species of 1, [Fe(DTTM)Cl] (3), which was in the S = 1/2 spin state; complex 3 exhibited a distorted square-pyramidal structure. X-ray absorption near-edge structure spectra of 1-3 were measured in both CH3CN solutions and BN pellets to observe comparable rising-edge energies for the three complexes, and Mössbauer spectra of 1-3 showed almost identical isomer shifts and quadruple splitting parameters, indicating that the iron centers of the three complexes are intact to be in the intermediate-spin iron(III) state. Thus, in complexes 2 and 3, it is evident that antiferromagnetic coupling is operating between the unpaired electron(s) of the ligand radical(s) and those of the iron(III) center.
RESUMO
A stimuli-responsive tetranuclear complex was assembled into new aggregates with controllable dimensionality through directional hydrogen bonds (HBs). A cyanide-bridged tetranuclear complex cation, [Co2 Fe2 (CN)6 (tp*)2 (bpy*)4 ]2+ (abbreviated to 12+ ) (tp*=hydrotris(3,5-dimethylpyrazol-1-yl)borate and bpy*=4,4'-di-methyl-2,2'-bipyridine) has two terminal cyanide nitrogens and acts as a hydrogen-bond acceptor (HBA) with a linear bridging mode. Co-crystallization of 12+ with p-hydroquinone (H2 Q), a hydrogen-bond donor (HBD) with two donor sites, led to a one-dimensional aggregate, 1(BPh4 )2 â (H2 Q)â 2 H2 O (2), while a two-dimensional sheet with a honeycomb structure, 13 (PF6 )6 â (H3 PG)2 â 4 CH3 CNâ 8 H2 O (3), was obtained by co-crystallization with phloroglucinol (H3 PG) acting as a three-way structure-directing HBD. Magnetic measurements revealed that 2 and 3 exhibited thermal and light-induced electron-transfer-coupled spin transitions (ETCSTs).
RESUMO
A TTF-based (TTF=tetrathiafulvalene) tridentate ligand (α-(4'-methyl-4,5-di-n-dodecylthylthiotetrathiafulvalene-5'-ylthio)- α'-[2,2,2-tris(1-pyrazolyl)ethoxy]-p-xylene) (L) with long-chain alkyl moieties was prepared in order to obtain a new multi-redox active gelator based on a mixed-metal octanuclear complex [FeIII4 NiII4 (CN)12 (tp)4 (L)4 ](BF4 )4 (1). The magnetism, electrochemistry, and gelation behavior of 1 were studied and 1,2-dichlorobenzene solutions of 1 are shown to display thermoreversible gelation behavior at room temperature. Furthermore, the gel phase of 1 was shown to undergo room-temperature gel-to-sol transformations induced by both the oxidation and reduction of the gelator complex by F4 TCNQ or [FeII (Cp*)2 ], respectively.
RESUMO
This study explores a new method to maximize the visible-light-driven photocatalytic performance of organic-inorganic hybrid polyoxometalates (POMs). Experimental and theoretical investigations of a family of phosphonate-substituted POMs show that modification of grafted organic moieties can be used to tune the electronic structure and photoactivity of the metal oxide component. Unlike fully inorganic polyoxotungstates, these organic-inorganic hybrid species are responsive to visible light and function as photocatalysts (λ > 420 nm) in the decomposition of a model environmental pollutant. The degree of photoactivation is shown to be dependent on the nature of the inductive effect exerted by the covalently grafted substituent groups. This study emphasizes the untapped potential that lies in an orbital engineering approach to hybrid-POM design and helps to underpin the next generation of bespoke, robust, and cost-effective molecular metal oxide photoactive materials and catalysts.