Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nature ; 534(7609): 676-9, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27357755

RESUMO

When a gecko moves on a ceiling it makes use of adhesion and stiction. Stiction--static friction--is experienced on microscopic and macroscopic scales and is related to adhesion and sliding friction. Although important for most locomotive processes, the concepts of adhesion, stiction and sliding friction are often only empirically correlated. A more detailed understanding of these concepts will, for example, help to improve the design of increasingly smaller devices such as micro- and nanoelectromechanical switches. Here we show how stiction and adhesion are related for a liquid drop on a hexagonal boron nitride monolayer on rhodium, by measuring dynamic contact angles in two distinct states of the solid-liquid interface: a corrugated state in the absence of hydrogen intercalation and an intercalation-induced flat state. Stiction and adhesion can be reversibly switched by applying different electrochemical potentials to the sample, causing atomic hydrogen to be intercalated or not. We ascribe the change in adhesion to a change in lateral electric field of in-plane two-nanometre dipole rings, because it cannot be explained by the change in surface roughness known from the Wenzel model. Although the change in adhesion can be calculated for the system we study, it is not yet possible to determine the stiction at such a solid-liquid interface using ab initio methods. The inorganic hybrid of hexagonal boron nitride and rhodium is very stable and represents a new class of switchable surfaces with the potential for application in the study of adhesion, friction and lubrication.


Assuntos
Compostos de Boro/química , Ródio/química , Adesividade , Animais , Eletricidade , Fricção , Hidrogênio/química , Locomoção , Lubrificação , Molhabilidade
2.
Chimia (Aarau) ; 76(6): 558-569, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069726

RESUMO

Angle-resolved photoelectron spectroscopy (ARPES) is a powerful tool in solid state sciences. Beside the direct measurement of the energy-momentum dispersion relation, the angular distribution of the photoelectron current reveals the structural environment of the emitting atoms via photoelectron diffraction effects. Moreover, in the case of molecular layers, the angular distribution of emission from molecular orbitals can be directly related to their charge density distribution via so-called orbital tomography. In the present paper we summarize our efforts undertaken over the past 12 years to add the dimension of time to these two methods via pump-probe experiments with femtosecond resolution. We give a comprehensive introduction to standard ARPES and time-resolved two photon photoemission and then focus on our efforts towards time-resolved versions of photoelectron diffraction and orbital tomography. Both, optimization of experimental parameters and data acquisition procedures, as well as new numerical tools are needed in order to realize such challenging full stop missing after experiments.

3.
Nano Lett ; 19(9): 5998-6004, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31408608

RESUMO

Inert single-layer boron nitride (h-BN) grown on a catalytic metal may be functionalized with quaternary ammonium compounds (quats) that are widely used as nonreactive electrolytes. We observe that the quat treatment, which facilitates the electrochemical transfer of two-dimensional materials, involves a decomposition of quat ions and leads to covalently bound quat derivatives on top of the 2D layer. Applying tetraoctylammonium and h-BN on rhodium, the reaction product is top-alkylized h-BN as identified with high-resolution X-ray photoelectron spectroscopy. The alkyl chains are homogeneously distributed across the surface, and the properties thereof are well-tunable by the choice of different quats. The functionalization further weakens the 2D material-substrate interaction and promotes easy transfer. Therefore, the functionalization scheme that is presented enables the design of 2D materials with tailored properties and with the freedom to position and orient them as required. The mechanism of this functionalization route is investigated with density functional theory calculations, and we identify the proximity of the catalytic metal substrate to alter the chemical reactivity of otherwise inert h-BN layers.

4.
J Am Chem Soc ; 141(32): 12839-12848, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31373808

RESUMO

While loading of cocatalysts is one of the most widely investigated strategies to promote the efficiency of photoelectrodes, the understanding of their functionality remains controversial. We established new hybrid molecular photoanodes with cobalt-based molecular cubane cocatalysts on hematite as a model system. Photoelectrochemical and rate law analyses revealed an interesting functionality transition of the {Co(II)4O4}-type cocatalysts. Their role changed from predominant hole reservoirs to catalytic centers upon modulation of the applied bias. Kinetic analysis of the photoelectrochemical processes indicated that this observed transition arises from the dynamic equilibria of photogenerated surface charge carriers. Most importantly, we confirmed this functional transition of the cocatalysts and the related kinetic properties for several cobalt-based molecular and heterogeneous catalysts, indicating wide applicability of the derived trends. Additionally, complementary analytical characterizations show that a transformation of the applied molecular species occurs at higher applied bias, pointing to a dynamic interplay connecting molecular and heterogeneous catalysis. Our insights promote the essential understanding of efficient (molecular) cocatalyzed photoelectrode systems to design tailor-made hybrid devices for a wide range of catalytic applications.

5.
Nano Lett ; 18(2): 1205-1212, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29314849

RESUMO

Large-area hexagonal boron nitride (h-BN) promises many new applications of two-dimensional materials, such as the protective packing of reactive surfaces or as membranes in liquids. However, scalable production beyond exfoliation from bulk single crystals remained a major challenge. Single-orientation monolayer h-BN nanomesh is grown on 4 in. wafer single crystalline rhodium films and transferred on arbitrary substrates such as SiO2, germanium, or transmission electron microscopy grids. The transfer process involves application of tetraoctylammonium bromide before electrochemical hydrogen delamination. The material performance is demonstrated with two applications. First, protective sealing of h-BN is shown by preserving germanium from oxidation in air at high temperatures. Second, the membrane functionality of the single h-BN layer is demonstrated in aqueous solutions. Here, we employ a growth substrate intrinsic preparation scheme to create regular 2 nm holes that serve as ion channels in liquids.

6.
Opt Express ; 26(7): 8364-8374, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29715804

RESUMO

The precise knowledge of the electric field in close proximity to metallic and dielectric surfaces is a prerequisite for pump-probe experiments aiming at the control of dynamic surface processes. We describe a model to reconstruct this electric field in immediate surface proximity from data taken in photoelectron THz-streaking experiments with an angle-resolved electron analyzer. Using Monte-Carlo simulations we are able to simulate streaking experiments on arbitrary surfaces with a variety of initial electron momentum distributions and to reconstruct the effective electric field at the surface. Our results validate the approach and suggest energy regimes for optimal pulse reconstruction.

7.
Nano Lett ; 17(11): 6620-6625, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28972377

RESUMO

We present a hetero junction based on macrocyclic hydrogen evolution catalysts (HEC) physisorbed on a single crystalline Cu2O(111) surface. Angle-resolved X-ray photoelectron spectroscopy (ARXPS) provides the spatial resolution of the band bending within the first nanometer of the subsurface region. Oxygen vacancies on the Cu2O(111) surface cause a downward band bending which is conserved upon adsorption of HEC layers of various thicknesses. This allows photoexcited electrons to be directed toward the surface where they can be made available for the reduction of protons by the HEC. Furthermore, Poisson's equation relates more subtle changes in the measured ARXPS spectra to the local charge density profile within the first 7 Å away from the surface and with atomic resolution. All observations are consistent with a polarization of the molecular layer in response to the electrical field at the oxide surface, which should be a general phenomenon at such organic-oxide heterointerfaces.

8.
Phys Rev Lett ; 112(5): 057601, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24580629

RESUMO

By means of spin- and angle-resolved photoelectron spectroscopy we studied the spin structure of thin films of the topological insulator Bi2Se3 grown on InP(111). For thicknesses below six quintuple layers the spin-polarized metallic topological surface states interact with each other via quantum tunneling and a gap opens. Our measurements show that the resulting surface states can be described by massive Dirac cones which are split in a Rashba-like manner due to the substrate induced inversion asymmetry. The inner and the outer Rashba branches have distinct localization in the top and the bottom part of the film, whereas the band apices are delocalized throughout the entire film. Supported by calculations, our observations help in the understanding of the evolution of the surface states at the topological phase transition and provide the groundwork for the realization of two-dimensional spintronic devices based on topological semiconductors.

9.
Nano Lett ; 13(6): 2668-75, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23656509

RESUMO

Two limiting factors for a new technology of graphene-based electronic devices are the difficulty of growing large areas of defect-free material and the integration of graphene with an atomically flat and insulating substrate material. Chemical vapor deposition (CVD) on metal surfaces, in particular on copper, may offer a solution to the first problem, while hexagonal boron nitride (h-BN) has been identified as an ideal insulating substrate material. The bottom-up growth of graphene/h-BN stacks on copper surfaces appears therefore as a promising route for future device fabrication. As an important step, we demonstrate the consecutive growth of well-aligned graphene on h-BN, both as single layers, by low-pressure CVD on Cu(111) in an ultrahigh vacuum environment. The resulting films show a largely predominant orientation, defined by the substrate, where the graphene lattice aligns parallel to the h-BN lattice, while each layer maintains its own lattice constant. The lattice mismatch of 1.6% between h-BN and graphene leads to a moiré pattern with a periodicity of about 9 nm, as observed with scanning tunneling microscopy. Accordingly, angle-resolved photoemission data reveal two slightly different Brillouin zones for electronic states localized in graphene and in h-BN, reflecting the vertical decoupling of the two layers. The graphene appears n-doped and shows no gap opening at the K[overline] point of the two-dimensional Brillouin zone.

10.
Nano Lett ; 13(5): 2098-103, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23551295

RESUMO

Single atoms, and in particular the least reactive noble gases, are difficult to immobilize at room temperature. Ion implantation into a crystal lattice has this capability, but the randomness of the involved processes does not permit much control over their distribution within the solid. Here we demonstrate that the boron nitride nanomesh, a corrugated single layer of hexagonal boron nitride (h-BN) with a 3.2 nm honeycomb superstructure formed on a Rh(111) surface, can trap individual argon atoms at distinct subsurface sites at room temperature. A kinetic energy window for implantation is identified where the argon ions can penetrate the h-BN layer but not enter the Rh lattice. Scanning tunneling microscopy and photoemission data show the presence of argon atoms at two distinct sites within the nanomesh unit cell, confirmed also by density functional theory calculations. The single atom implants are stable in air. Annealing of implanted structures to 900 K induces the formation of highly regular holes of 2 nm diameter in the h-BN layer with adjacent flakes of the same size found on top of the layer. We explain this "can-opener" effect by the presence of a vacancy defect, generated during the penetration of the Ar ion through the h-BN lattice, and propagating along the rim of a nanomesh pore where the h-BN lattice is highly bent. The reported effects are also observed in graphene on ruthenium and for neon atoms.


Assuntos
Argônio/química , Compostos de Boro/química , Grafite/química , Cinética , Ródio/química , Rutênio/química , Propriedades de Superfície , Temperatura
11.
J Phys Chem C Nanomater Interfaces ; 127(38): 19097-19106, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37791099

RESUMO

Stable single metal adatoms on oxide surfaces are of great interest for future applications in the field of catalysis. We studied iridium single atoms (Ir1) supported on a Fe3O4(001) single crystal, a model system previously only studied in ultra-high vacuum, to explore their behavior upon exposure to several gases in the millibar range (up to 20 mbar) utilizing ambient-pressure X-ray photoelectron spectroscopy. The Ir1 single adatoms appear stable upon exposure to a variety of common gases at room temperature, including oxygen (O2), hydrogen (H2), nitrogen (N2), carbon monoxide (CO), argon (Ar), and water vapor. Changes in the Ir 4f binding energy suggest that Ir1 interacts not only with adsorbed and dissociated molecules but also with water/OH groups and adventitious carbon species deposited inevitably under these pressure conditions. At higher temperatures (473 K), iridium adatom encapsulation takes place in an oxidizing environment (a partial O2 pressure of 0.1 mbar). We attribute this phenomenon to magnetite growth caused by the enhanced diffusion of iron cations near the surface. These findings provide an initial understanding of the behavior of single atoms on metal oxides outside the UHV regime.

12.
J Phys Chem Lett ; 14(13): 3132-3138, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36952665

RESUMO

Carboxylic acids bind to titanium dioxide (TiO2) dissociatively, forming surface superstructures that give rise to a (2 × 1) pattern detected by low-energy electron diffraction. Exposing this system to water, however, leads to a loss of the highly ordered surface structure. The formate-covered surface was investigated by a combination of diffraction and spectroscopy techniques, together with static and dynamic ab initio simulations, with the conclusion that a dynamic equilibrium exists between adsorbed formic acid and water molecules. This equilibrium process is an important factor for obtaining a better understanding of controlling the self-cleaning properties of TiO2, because the formic acid monolayer is responsible for the amphiphilic character of the surface.

13.
Phys Rev Lett ; 109(11): 116403, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23005655

RESUMO

BiTeI has a layered and noncentrosymmetric structure where strong spin-orbit interaction leads to a giant Rashba spin splitting in the bulk bands. We present direct measurements of the bulk band structure obtained with soft x-ray angle-resolved photoemission (ARPES), revealing the three-dimensional Fermi surface. The observed spindle torus shape bears the potential for a topological transition in the bulk by hole doping. Moreover, the bulk electronic structure is clearly disentangled from the two-dimensional surface electronic structure by means of high-resolution and spin-resolved ARPES measurements in the ultraviolet regime. All findings are supported by ab initio calculations.

14.
Langmuir ; 28(43): 15246-50, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23039222

RESUMO

Ice nuclei have been studied on the hexagonal boron nitride nanomesh (h-BN/Rh(111)), a template with 2 nm wide molecule traps. Scanning tunneling microscopy shows confined clusters, where oligomers with three protrusions are particularly abundant. Together with local barrier height dI/dz maps, it is found that the dipoles of the water molecules arrange in a homodrome, which is consistent with density functional theory calculations. Hydrogen bonds toward the substrate identify h-BN/Rh(111) to be hydrophilic. The substrate distorts the hexamers (n = 6) and possibly pentamers (n = 5), where the experimentally observed footprints of the three protrusions appear more chiral than expected.

15.
Phys Rev Lett ; 107(8): 087601, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21929206

RESUMO

Energy distribution curves of laser-induced electron pulses from a tungsten tip have been measured as a function of tip voltage and laser power. Electron emission via tunneling through and/or excitation over the surface barrier from photoexcited nonequilibrium electron distributions are clearly observed. The spectral shapes largely vary with the emission processes and are strongly affected by electron dynamics. Simulations successfully reproduce the spectra, thus allowing direct insight into the involved electron dynamics and revealing the temporal tunability of electron emission via the two experimental parameters. These results should be useful to optimize the pulse characteristics for many applications based on ultrafast laser-induced electron emission.

16.
Chimia (Aarau) ; 65(5): 342-5, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21744690

RESUMO

Photoelectron spectroscopy (PES) is a versatile tool, which provides insight into electronic structure and dynamics in condensed matter, surfaces, interfaces and molecules. The history of PES is briefly outlined and illustrated by current developments in the field of time-resolved PES. Our group's research is mostly aimed at studying ultrafast processes and associated lifetimes related to electronic excitation at solid surfaces.

17.
ACS Nano ; 15(1): 1351-1357, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33377769

RESUMO

The production of high-quality two-dimensional (2D) materials is essential for the ultimate performance of single layers and their hybrids. Hexagonal boron nitride (h-BN) is foreseen to become the key 2D hybrid and packaging material since it is insulating, impermeable, flat, transparent, and chemically inert, though it is difficult to attain in ultimate quality. Here, a scheme is reported for producing single layer h-BN that shows higher quality in view of mosaicity and strain variations than material from chemical vapor deposition (CVD). We delaminate CVD h-BN from Rh(111) and transfer it to a clean metal surface. The twisting angle between BN and the second substrate yields metastable moiré structures. Annealing above 1000 K leads to 2D distillation, i.e., catalyst-assisted BN sublimation from the edges of the transferred layer and subsequent condensation into superior quality h-BN. This provides a way for 2D material production remote from CVD instrumentation.

18.
Nat Chem ; 13(6): 523-529, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33767362

RESUMO

Anchoring molecular catalysts on electrode surfaces combines the high selectivity and activity of molecular systems with the practicality of heterogeneous systems. Molecular catalysts, however, are far less stable than traditional heterogeneous electrocatalysts, and therefore a method to easily replace anchored molecular catalysts that have degraded could make such electrosynthetic systems more attractive. Here we applied a non-covalent 'click' chemistry approach to reversibly bind molecular electrocatalysts to electrode surfaces through host-guest complexation with surface-anchored cyclodextrins. The host-guest interaction is remarkably strong and enables the flow of electrons between the electrode and the guest catalyst. Electrosynthesis in both organic and aqueous media was demonstrated on metal oxide electrodes, with stability on the order of hours. The catalytic surfaces can be recycled by controlled release of the guest from the host cavities and the readsorption of fresh guest.

19.
Phys Rev Lett ; 104(18): 187602, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20482209

RESUMO

The influence of structural defects, in the form of step lattices, on the spin polarization of the spin-orbit split Shockley surface state of Au(111) has been investigated. Spin- and angle-resolved photoemission data from three vicinal surfaces with different step densities are presented. The spin splitting is preserved in all three cases, and there is no reduction of the spin polarization of individual subbands, including the umklapp bands induced by the step lattice. On the sample with the highest step density studied, where the wave functions are delocalized over several terraces, the spin splitting is enhanced substantially, likely as an effect of the effective surface corrugation as on related surface alloys. The spin texture shows in all cases spin polarization vectors tangential to the Fermi circles, with the same helicities as on Au(111).

20.
Chemphyschem ; 11(2): 399-403, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20024977

RESUMO

Water was investigated on a h-BN/Rh(111) nanomesh template using variable temperature scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. Below 52 K, two distinct phases self-assemble within the 3.2 nm unit cell of the nanomesh that consists of "holes" and "wires". In the 2 nm holes, an ordered phase of nano-ice crystals with about 40 molecules is found. The ice crystals arrange in a bilayer honeycomb lattice, where hydrogen atoms of the lower layer point to the substrate. The phase on the 1 nm wires is a low density gas phase. Tunneling barrier height dI/dz spectroscopy measurements reveal the dipoles of individual molecules in the nano-ice clusters and access proton disorder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA