Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(25): 4737-4755.e18, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36493753

RESUMO

Selective breeding of domestic dogs has generated diverse breeds often optimized for performing specialized tasks. Despite the heritability of breed-typical behavioral traits, identification of causal loci has proven challenging due to the complexity of canine population structure. We overcome longstanding difficulties in identifying genetic drivers of canine behavior by developing a framework for understanding relationships between breeds and the behaviors that define them, utilizing genetic data for over 4,000 domestic, semi-feral, and wild canids and behavioral survey data for over 46,000 dogs. We identify ten major canine genetic lineages and their behavioral correlates and show that breed diversification is predominantly driven by non-coding regulatory variation. We determine that lineage-associated genes converge in neurodevelopmental co-expression networks, identifying a sheepdog-associated enrichment for interrelated axon guidance functions. This work presents a scaffold for canine diversification that positions the domestic dog as an unparalleled system for revealing the genetic origins of behavioral diversity.


Assuntos
Comportamento Animal , Cães , Animais , Cães/genética , Cães/fisiologia , Variação Genética , Fenótipo , Linhagem
2.
Annu Rev Cell Dev Biol ; 30: 535-60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25062362

RESUMO

Although most modern dog breeds are less than 200 years old, the symbiosis between man and dog is ancient. Since prehistoric times, repeated selection events have transformed the wolf into man's guardians, laborers, athletes, and companions. The rapid transformation from pack predator to loyal companion is a feat that is arguably unique among domesticated animals. How this transformation came to pass remained a biological mystery until recently: Within the past decade, the deployment of genomic approaches to study population structure, detect signatures of selection, and identify genetic variants that underlie canine phenotypes is ushering into focus novel biological mechanisms that make dogs remarkable. Ironically, the very practices responsible for breed formation also spurned morbidity; today, many diseases are correlated with breed identity. In this review, we discuss man's best friend in the context of a genetic model to understand paradigms of heritable phenotypes, both desirable and disadvantageous.


Assuntos
Cães/genética , Genoma , Animais , Tamanho Corporal/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/veterinária , Cruzamento , Mapeamento Cromossômico , Modelos Animais de Doenças , Doenças do Cão/genética , Cães/anatomia & histologia , Cães/classificação , Extremidades/anatomia & histologia , Estudo de Associação Genômica Ampla , Glicoproteínas/genética , Glicoproteínas/fisiologia , Proteína HMGA2/genética , Proteína HMGA2/fisiologia , Cabelo/anatomia & histologia , Cardiopatias/genética , Cardiopatias/veterinária , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Síndromes Neoplásicas Hereditárias/genética , Síndromes Neoplásicas Hereditárias/veterinária , Osteossarcoma/genética , Osteossarcoma/veterinária , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Seleção Genética , Pele/anatomia & histologia , Crânio/anatomia & histologia , Proteína Smad2/genética , Proteína Smad2/fisiologia , Especificidade da Espécie , Cauda/anatomia & histologia
3.
Nature ; 586(7831): 683-692, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33116284

RESUMO

Starting with the launch of the Human Genome Project three decades ago, and continuing after its completion in 2003, genomics has progressively come to have a central and catalytic role in basic and translational research. In addition, studies increasingly demonstrate how genomic information can be effectively used in clinical care. In the future, the anticipated advances in technology development, biological insights, and clinical applications (among others) will lead to more widespread integration of genomics into almost all areas of biomedical research, the adoption of genomics into mainstream medical and public-health practices, and an increasing relevance of genomics for everyday life. On behalf of the research community, the National Human Genome Research Institute recently completed a multi-year process of strategic engagement to identify future research priorities and opportunities in human genomics, with an emphasis on health applications. Here we describe the highest-priority elements envisioned for the cutting-edge of human genomics going forward-that is, at 'The Forefront of Genomics'.


Assuntos
Pesquisa Biomédica/tendências , Genoma Humano/genética , Genômica/tendências , Saúde Pública/normas , Pesquisa Translacional Biomédica/tendências , Pesquisa Biomédica/economia , COVID-19/genética , Genômica/economia , Humanos , National Human Genome Research Institute (U.S.)/economia , Mudança Social , Pesquisa Translacional Biomédica/economia , Estados Unidos
4.
PLoS Genet ; 18(4): e1010160, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35482674

RESUMO

Most modern dog breeds were developed within the last two hundred years, following strong and recent human selection based predominantly on aesthetics, with few modern breeds constructed solely to maximize their work potential. In many cases, these working breeds represent the last remnants of now lost populations. The Patagonian sheepdog (PGOD), a rare herding breed, is a remarkable example of such a population. Maintained as an isolated population for over 130 years, the PGOD offers a unique opportunity to understand the genetic relationship amongst modern herding breeds, determine key genomic structure of the founder PGOD populations, and investigate how canine genomic data can mirror human migration patterns. We thus analyzed the population structure of 159 PGOD, comparing them with 1514 dogs representing 175 established breeds. Using 150,069 SNPs from a high-density SNP genotyping array, we establish the genomic composition, ancestry, and genetic diversity of the population, complementing genomic data with the PGOD's migratory history to South America. Our phylogenetic analysis reveals that PGODs are most closely related to modern herding breeds hailing from the United Kingdom. Admixture models illustrate a greater degree of diversity and genetic heterogeneity within the very small PGOD population than in Western European herding breeds, suggesting the PGOD predates the 200-year-old construction of most pure breeds known today. We thus propose that PGODs originated from the foundational herding dogs of the UK, prior to the Victorian explosion of breeds, and that they are the closest link to a now-extinct population of herding dogs from which modern herding breeds descended.


Assuntos
Genoma , Cães Trabalhadores , Animais , Cruzamento , Cães , Genômica , Filogenia
5.
Proc Natl Acad Sci U S A ; 119(21): e2120887119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35580182

RESUMO

DNA methylation profiles have been used to develop biomarkers of aging known as epigenetic clocks, which predict chronological age with remarkable accuracy and show promise for inferring health status as an indicator of biological age. Epigenetic clocks were first built to monitor human aging, but their underlying principles appear to be evolutionarily conserved, as they have now been successfully developed for many mammalian species. Here, we describe reliable and highly accurate epigenetic clocks shown to apply to 93 domestic dog breeds. The methylation profiles were generated using the mammalian methylation array, which utilizes DNA sequences that are conserved across all mammalian species. Canine epigenetic clocks were constructed to estimate age and also average time to death. We also present two highly accurate human­dog dual species epigenetic clocks (R = 0.97), which may facilitate the ready translation from canine to human use (or vice versa) of antiaging treatments being developed for longevity and preventive medicine. Finally, epigenome-wide association studies here reveal individual methylation sites that may underlie the inverse relationship between breed weight and lifespan. Overall, we describe robust biomarkers to measure aging and, potentially, health status in canines.


Assuntos
Metilação de DNA , Epigênese Genética , Envelhecimento/genética , Animais , DNA , Metilação de DNA/genética , Cães , Epigenômica , Humanos
6.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042807

RESUMO

Genomics encompasses the entire tree of life, both extinct and extant, and the evolutionary processes that shape this diversity. To date, genomic research has focused on humans, a small number of agricultural species, and established laboratory models. Fewer than 18,000 of ∼2,000,000 eukaryotic species (<1%) have a representative genome sequence in GenBank, and only a fraction of these have ancillary information on genome structure, genetic variation, gene expression, epigenetic modifications, and population diversity. This imbalance reflects a perception that human studies are paramount in disease research. Yet understanding how genomes work, and how genetic variation shapes phenotypes, requires a broad view that embraces the vast diversity of life. We have the technology to collect massive and exquisitely detailed datasets about the world, but expertise is siloed into distinct fields. A new approach, integrating comparative genomics with cell and evolutionary biology, ecology, archaeology, anthropology, and conservation biology, is essential for understanding and protecting ourselves and our world. Here, we describe potential for scientific discovery when comparative genomics works in close collaboration with a broad range of fields as well as the technical, scientific, and social constraints that must be addressed.


Assuntos
Biodiversidade , Evolução Biológica , Genômica/métodos , Animais , Evolução Molecular , Variação Genética/genética , Genoma/genética , Genômica/tendências , Humanos , Filogenia
7.
Genome Res ; 31(5): 762-774, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33863806

RESUMO

Extreme phenotypic diversity, a history of artificial selection, and socioeconomic value make domestic dog breeds a compelling subject for genomic research. Copy number variation (CNV) is known to account for a significant part of inter-individual genomic diversity in other systems. However, a comprehensive genome-wide study of structural variation as it relates to breed-specific phenotypes is lacking. We have generated whole genome CNV maps for more than 300 canids. Our data set extends the canine structural variation landscape to more than 100 dog breeds, including novel variants that cannot be assessed using microarray technologies. We have taken advantage of this data set to perform the first CNV-based genome-wide association study (GWAS) in canids. We identify 96 loci that display copy number differences across breeds, which are statistically associated with a previously compiled set of breed-specific morphometrics and disease susceptibilities. Among these, we highlight the discovery of a long-range interaction involving a CNV near MED13L and TBX3, which could influence breed standard height. Integration of the CNVs with chromatin interactions, long noncoding RNA expression, and single nucleotide variation highlights a subset of specific loci and genes with potential functional relevance and the prospect to explain trait variation between dog breeds.


Assuntos
Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Animais , Cães , Genoma , Genômica , Fenótipo , Polimorfismo de Nucleotídeo Único
8.
PLoS Genet ; 17(5): e1009543, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33983928

RESUMO

Histiocytic sarcoma is an aggressive hematopoietic malignancy of mature tissue histiocytes with a poorly understood etiology in humans. A histologically and clinically similar counterpart affects flat-coated retrievers (FCRs) at unusually high frequency, with 20% developing the lethal disease. The similar clinical presentation combined with the closed population structure of dogs, leading to high genetic homogeneity, makes dogs an excellent model for genetic studies of cancer susceptibility. To determine the genetic risk factors underlying histiocytic sarcoma in FCRs, we conducted multiple genome-wide association studies (GWASs), identifying two loci that confer significant risk on canine chromosomes (CFA) 5 (Pwald = 4.83x10-9) and 19 (Pwald = 2.25x10-7). We subsequently undertook a multi-omics approach that has been largely unexplored in the canine model to interrogate these regions, generating whole genome, transcriptome, and chromatin immunoprecipitation sequencing. These data highlight the PI3K pathway gene PIK3R6 on CFA5, and proximal candidate regulatory variants that are strongly associated with histiocytic sarcoma and predicted to impact transcription factor binding. The CFA5 association colocalizes with susceptibility loci for two hematopoietic malignancies, hemangiosarcoma and B-cell lymphoma, in the closely related golden retriever breed, revealing the risk contribution this single locus makes to multiple hematological cancers. By comparison, the CFA19 locus is unique to the FCR and harbors risk alleles associated with upregulation of TNFAIP6, which itself affects cell migration and metastasis. Together, these loci explain ~35% of disease risk, an exceptionally high value that demonstrates the advantages of domestic dogs for complex trait mapping and genetic studies of cancer susceptibility.


Assuntos
Doenças do Cão/genética , Cães/classificação , Cães/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/veterinária , Mutação em Linhagem Germinativa/genética , Neoplasias Hematológicas/veterinária , Alelos , Animais , Sítios de Ligação , Moléculas de Adesão Celular/genética , Sequenciamento de Cromatina por Imunoprecipitação , Genoma/genética , Genômica , Genótipo , Neoplasias Hematológicas/genética , Sarcoma Histiocítico/genética , Sarcoma Histiocítico/veterinária , Fosfatidilinositol 3-Quinase/genética , Análise de Componente Principal , RNA-Seq , Fatores de Transcrição/metabolismo
9.
Mol Ecol ; 32(15): 4133-4150, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37246949

RESUMO

Admixture between species is a cause for concern in wildlife management. Canids are particularly vulnerable to interspecific hybridisation, and genetic admixture has shaped their evolutionary history. Microsatellite DNA testing, relying on a small number of genetic markers and geographically restricted reference populations, has identified extensive domestic dog admixture in Australian dingoes and driven conservation management policy. But there exists a concern that geographic variation in dingo genotypes could confound ancestry analyses that use a small number of genetic markers. Here, we apply genome-wide single-nucleotide polymorphism (SNP) genotyping to a set of 402 wild and captive dingoes collected from across Australia and then carry out comparisons to domestic dogs. We then perform ancestry modelling and biogeographic analyses to characterise population structure in dingoes and investigate the extent of admixture between dingoes and dogs in different regions of the continent. We show that there are at least five distinct dingo populations across Australia. We observed limited evidence of dog admixture in wild dingoes. Our work challenges previous reports regarding the occurrence and extent of dog admixture in dingoes, as our ancestry analyses show that previous assessments severely overestimate the degree of domestic dog admixture in dingo populations, particularly in south-eastern Australia. These findings strongly support the use of genome-wide SNP genotyping as a refined method for wildlife managers and policymakers to assess and inform dingo management policy and legislation moving forwards.


Assuntos
Cães , Animais , Animais Selvagens/genética , Austrália , Marcadores Genéticos , Genoma/genética , Genótipo
10.
Nat Rev Genet ; 18(12): 705-720, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28944780

RESUMO

The domestic dog represents one of the most dramatic long-term evolutionary experiments undertaken by humans. From a large wolf-like progenitor, unparalleled diversity in phenotype and behaviour has developed in dogs, providing a model for understanding the developmental and genomic mechanisms of diversification. We discuss pattern and process in domestication, beginning with general findings about early domestication and problems in documenting selection at the genomic level. Furthermore, we summarize genotype-phenotype studies based first on single nucleotide polymorphism (SNP) genotyping and then with whole-genome data and show how an understanding of evolution informs topics as different as human history, adaptive and deleterious variation, morphological development, ageing, cancer and behaviour.


Assuntos
Cães/genética , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma , Animais , Comportamento Animal , Doenças do Cão/genética , Cães/anatomia & histologia , Cães/classificação , Cães/fisiologia , Domesticação , Neoplasias/genética , Neoplasias/veterinária , Seleção Genética , Seleção Artificial
11.
Proc Natl Acad Sci U S A ; 117(39): 24369-24376, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32868416

RESUMO

New Guinea singing dogs (NGSD) are identifiable by their namesake vocalizations, which are unlike any other canid population. Their novel behaviors and potential singular origin during dog domestication make them an attractive, but elusive, subject for evolutionary and conservation study. Although once plentiful on the island of New Guinea (NG), they were presumed to currently exist only in captivity. This conclusion was based on the lack of sightings in the lowlands of the island and the concurrent expansion of European- and Asian-derived dogs. We have analyzed the first nuclear genomes from a canid population discovered during a recent expedition to the highlands of NG. The extreme altitude (>4,000 m) of the highland wild dogs' (HWD) observed range and confirmed vocalizations indicate their potential to be a wild NGSD population. Comparison of single-nucleotide polymorphism genotypes shows strong similarity between HWD and the homogeneous captive NGSD, with the HWD showing significantly higher genetic diversity. Admixture analyses and estimation of shared haplotypes with phylogenetically diverse populations also indicates the HWD is a novel population within the distinct evolutionary lineage of Oceanic canids. Taken together, these data indicate the HWD possesses a distinct potential to aid in the conservation of NGSD both in the wild and under human care.


Assuntos
Animais Selvagens/genética , Cães/classificação , Animais , Animais Selvagens/classificação , Animais Selvagens/fisiologia , Cães/genética , Cães/fisiologia , Evolução Molecular , Genoma , Nova Guiné , Filogenia , Polimorfismo de Nucleotídeo Único , Canto
12.
PLoS Genet ; 16(9): e1008956, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32911491

RESUMO

The genomic diversity of the domestic dog is an invaluable resource for advancing understanding of mammalian biology, evolutionary biology, morphologic variation, and behavior. There are approximately 350 recognized breeds in the world today, many established through hybridization and selection followed by intense breeding programs aimed at retaining or enhancing specific traits. As a result, many breeds suffer from an excess of particular diseases, one of many factors leading to the recent trend of "designer breed" development, i.e. crossing purebred dogs from existing breeds in the hope that offspring will be enriched for desired traits and characteristics of the parental breeds. We used a dense panel of 150,106 SNPs to analyze the population structure of the Australian labradoodle (ALBD), to understand how such breeds are developed. Haplotype and admixture analyses show that breeds other than the poodle (POOD) and Labrador retriever (LAB) contributed to ALBD formation, but that the breed is, at the genetic level, predominantly POOD, with all small and large varieties contributing to its construction. Allele frequency analysis reveals that the breed is enhanced for variants associated with a poodle-like coat, which is perceived by breeders to have an association with hypoallergenicity. We observed little enhancement for LAB-specific alleles. This study provides a blueprint for understanding how dog breeds are formed, highlighting the limited scope of desired traits in defining new breeds.


Assuntos
Animais Domésticos/genética , Cães/genética , Seleção Genética/genética , Alelos , Animais , Austrália , Cruzamento/métodos , Frequência do Gene/genética , Testes Genéticos , Variação Genética , Genômica , Genótipo , Haplótipos , Fenótipo , Filogenia
13.
PLoS Genet ; 16(3): e1008667, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32226005

RESUMO

Genome-wide association studies have identified more than 100 SNPs that increase the risk of prostate cancer (PrCa). We identify and compare expression quantitative trait loci (eQTLs) and CpG methylation quantitative trait loci (meQTLs) among 147 established PrCa risk SNPs in primary prostate tumors (n = 355 from a Seattle-based study and n = 495 from The Cancer Genome Atlas, TCGA) and tumor-adjacent, histologically benign samples (n = 471 from a Mayo Clinic study). The role of DNA methylation in eQTL regulation of gene expression was investigated by data triangulation using several causal inference approaches, including a proposed adaptation of the Causal Inference Test (CIT) for causal direction. Comparing eQTLs between tumors and benign samples, we show that 98 of the 147 risk SNPs were identified as eQTLs in the tumor-adjacent benign samples, and almost all 34 eQTL identified in tumor sets were also eQTLs in the benign samples. Three lines of results support the causal role of DNA methylation. First, nearly 100 of the 147 risk SNPs were identified as meQTLs in one tumor set, and almost all eQTLs in tumors were meQTLs. Second, the loss of eQTLs in tumors relative to benign samples was associated with altered DNA methylation. Third, among risk SNPs identified as both eQTLs and meQTLs, mediation analyses suggest that over two-thirds have evidence of a causal role for DNA methylation, mostly mediating genetic influence on gene expression. In summary, we provide a comprehensive catalog of eQTLs, meQTLs and putative cancer genes for known PrCa risk SNPs. We observe that a substantial portion of germline eQTL regulatory mechanisms are maintained in the tumor development, despite somatic alterations in tumor genome. Finally, our mediation analyses illuminate the likely intermediary role of CpG methylation in eQTL regulation of gene expression.


Assuntos
Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias da Próstata/genética , Bases de Dados Genéticas , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Fatores de Risco
14.
Mamm Genome ; 33(1): 213-229, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34498136

RESUMO

Although DNA array-based approaches for genome-wide association studies (GWAS) permit the collection of thousands of low-cost genotypes, it is often at the expense of resolution and completeness, as SNP chip technologies are ultimately limited by SNPs chosen during array development. An alternative low-cost approach is low-pass whole genome sequencing (WGS) followed by imputation. Rather than relying on high levels of genotype confidence at a set of select loci, low-pass WGS and imputation rely on the combined information from millions of randomly sampled low-confidence genotypes. To investigate low-pass WGS and imputation in the dog, we assessed accuracy and performance by downsampling 97 high-coverage (> 15×) WGS datasets from 51 different breeds to approximately 1× coverage, simulating low-pass WGS. Using a reference panel of 676 dogs from 91 breeds, genotypes were imputed from the downsampled data and compared to a truth set of genotypes generated from high-coverage WGS. Using our truth set, we optimized a variant quality filtering strategy that retained approximately 80% of 14 M imputed sites and lowered the imputation error rate from 3.0% to 1.5%. Seven million sites remained with a MAF > 5% and an average imputation quality score of 0.95. Finally, we simulated the impact of imputation errors on outcomes for case-control GWAS, where small effect sizes were most impacted and medium-to-large effect sizes were minorly impacted. These analyses provide best practice guidelines for study design and data post-processing of low-pass WGS-imputed genotypes in dogs.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Animais , Estudos de Casos e Controles , Cães , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Sequenciamento Completo do Genoma
15.
J Hered ; 113(2): 160-170, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35575082

RESUMO

Despite periodic drops in popularity, Arctic sled dogs continue to play a vital role in northern societies, providing both freight transit and recreational race activities. In this study, we selected the Mackenzie River Husky, a freight dog of complex history, and the Chinook, an American Kennel Club recognized freight dog breed whose heritage reportedly overlaps that of the MKRH, for detailed population analysis. We tested each to determine their component breeds and used admixture analysis to ascertain their population structure. We utilized haplotype analysis to identify genomic regions shared between each population and their founding breeds. Our data show that the Alaskan Malamutes and modern Greenland sled dog contributed to both populations, but there are also unexpected contributions from the German Shepherd dog and Collie. We used haplotype analysis to identify genomic regions nearing fixation in population type and identify provocative genes in each region. Finally, in response to recent reports regarding the importance of dietary lipid genes in Arctic dogs, we analyzed 8 such genes in a targeted analysis observing signatures of selection in both populations at the MLXIPL gene loci. These data highlight the genetic routes that breeds of similar function have taken toward their occupation as successful sled dogs.


Assuntos
Lobos , Animais , Cães , Genoma , Genômica , Haplótipos , Lobos/genética
16.
PLoS Genet ; 15(5): e1008102, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31095560

RESUMO

In flat-faced dog breeds, air resistance caused by skull conformation is believed to be a major determinant of Brachycephalic Obstructive Airway Syndrome (BOAS). The clinical presentation of BOAS is heterogeneous, suggesting determinants independent of skull conformation contribute to airway disease. Norwich Terriers, a mesocephalic breed, are predisposed to Upper Airway Syndrome (UAS), a disease whose pathological features overlap with BOAS. Our health screening clinic examined and scored the airways of 401 Norwich terriers by laryngoscopy. Genome-wide association analyses of UAS-related pathologies revealed a genetic association on canine chromosome 13 (rs9043975, p = 7.79x10-16). Whole genome resequencing was used to identify causal variant(s) within a 414 kb critical interval. This approach highlighted an error in the CanFam3.1 dog assembly, which when resolved, led to the discovery of a c.2786G>A missense variant in exon 20 of the positional candidate gene, ADAM metallopeptidase with thrombospondin type 1 motif 3 (ADAMTS3). In addition to segregating with UAS amongst Norwich Terriers, the ADAMTS3 c.2786G>A risk allele frequency was enriched among the BOAS-susceptible French and (English) Bulldogs. Previous studies indicate that ADAMTS3 loss of function results in lymphoedema. Our results suggest a new paradigm in the understanding of canine upper airway disease aetiology: airway oedema caused by disruption of ADAMTS3 predisposes dogs to respiratory obstruction. These findings will enhance breeding practices and could refine the prognostics of surgical interventions that are often used to treat airway obstruction.


Assuntos
Proteínas ADAMTS/genética , Doenças do Cão/genética , Mutação de Sentido Incorreto , Doença Pulmonar Obstrutiva Crônica/genética , Alelos , Animais , Cromossomos de Mamíferos/química , Suscetibilidade a Doenças , Doenças do Cão/diagnóstico por imagem , Doenças do Cão/fisiopatologia , Cães , Feminino , Expressão Gênica , Frequência do Gene , Estudo de Associação Genômica Ampla , Laringoscopia , Masculino , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Sistema Respiratório/anatomia & histologia , Sistema Respiratório/diagnóstico por imagem , Sistema Respiratório/fisiopatologia , Crânio/anatomia & histologia , Sequenciamento Completo do Genoma
17.
Mol Ecol ; 30(17): 4292-4304, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34181791

RESUMO

The red wolf (Canis rufus) of the eastern US was driven to near-extinction by colonial-era persecution and habitat conversion, which facilitated coyote (C. latrans) range expansion and widespread hybridization with red wolves. The observation of some grey wolf (C. lupus) ancestry within red wolves sparked controversy over whether it was historically a subspecies of grey wolf with its predominant "coyote-like" ancestry obtained from post-colonial coyote hybridization (2-species hypothesis) versus a distinct species closely related to the coyote that hybridized with grey wolf (3-species hypothesis). We analysed mitogenomes sourced from before the 20th century bottleneck and coyote invasion, along with hundreds of modern amplicons, which led us to reject the 2-species model and to investigate a broader phylogeographic 3-species model suggested by the fossil record. Our findings broadly support this model, in which red wolves ranged the width of the American continent prior to arrival of the grey wolf to the mid-continent 60-80 ka; red wolves subsequently disappeared from the mid-continent, relegated to California and the eastern forests, which ushered in emergence of the coyote in their place (50-30 ka); by the early Holocene (12-10 ka), coyotes had expanded into California, where they admixed with and phenotypically replaced western red wolves in a process analogous to the 20th century coyote invasion of the eastern forests. Findings indicate that the red wolf pre-dated not only European colonization but human, and possibly coyote, presence in North America. These findings highlight the urgency of expanding conservation efforts for the red wolf.


Assuntos
Coiotes , Lobos , Animais , Coiotes/genética , Ecossistema , Hibridização Genética , Filogeografia , Lobos/genética
18.
Eur J Epidemiol ; 36(9): 913-925, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34275018

RESUMO

While being in a committed relationship is associated with a better prostate cancer prognosis, little is known about how marital status relates to its incidence. Social support provided by marriage/relationship could promote a healthy lifestyle and an increased healthcare seeking behavior. We investigated the association between marital status and prostate cancer risk using data from the PRACTICAL Consortium. Pooled analyses were conducted combining 12 case-control studies based on histologically-confirmed incident prostate cancers and controls with information on marital status prior to diagnosis/interview. Marital status was categorized as married/partner, separated/divorced, single, or widowed. Tumours with Gleason scores ≥ 8 defined high-grade cancers, and low-grade otherwise. NCI-SEER's summary stages (local, regional, distant) indicated the extent of the cancer. Logistic regression was used to derive odds ratios (ORs) and 95% confidence intervals (CI) for the association between marital status and prostate cancer risk, adjusting for potential confounders. Overall, 14,760 cases and 12,019 controls contributed to analyses. Compared to men who were married/with a partner, widowed men had an OR of 1.19 (95% CI 1.03-1.35) of prostate cancer, with little difference between low- and high-grade tumours. Risk estimates among widowers were 1.14 (95% CI 0.97-1.34) for local, 1.53 (95% CI 1.22-1.92) for regional, and 1.56 (95% CI 1.05-2.32) for distant stage tumours. Single men had elevated risks of high-grade cancers. Our findings highlight elevated risks of incident prostate cancer among widowers, more often characterized by tumours that had spread beyond the prostate at the time of diagnosis. Social support interventions and closer medical follow-up in this sub-population are warranted.


Assuntos
Adenocarcinoma/epidemiologia , Estado Civil , Neoplasias da Próstata/epidemiologia , Idoso , Divórcio , Humanos , Incidência , Masculino , Casamento , Pessoa de Meia-Idade , Vigilância da População , Pessoa Solteira , Apoio Social
19.
Proc Natl Acad Sci U S A ; 115(30): E7212-E7221, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29970415

RESUMO

Modern dogs are distinguished among domesticated species by the vast breadth of phenotypic variation produced by strong and consistent human-driven selective pressure. The resulting breeds reflect the development of closed populations with well-defined physical and behavioral attributes. The sport-hunting dog group has long been employed in assistance to hunters, reflecting strong behavioral pressures to locate and pursue quarry over great distances and variable terrain. Comparison of whole-genome sequence data between sport-hunting and terrier breeds, groups at the ends of a continuum in both form and function, reveals that genes underlying cardiovascular, muscular, and neuronal functions are under strong selection in sport-hunting breeds, including ADRB1, TRPM3, RYR3, UTRN, ASIC3, and ROBO1 We also identified an allele of TRPM3 that was significantly associated with increased racing speed in Whippets, accounting for 11.6% of the total variance in racing performance. Finally, we observed a significant association of ROBO1 with breed-specific accomplishments in competitive obstacle course events. These results provide strong evidence that sport-hunting breeds have been adapted to their occupations by improved endurance, cardiac function, blood flow, and cognitive performance, demonstrating how strong behavioral selection alters physiology to create breeds with distinct capabilities.


Assuntos
Alelos , Cães/genética , Proteínas Musculares/genética , Proteínas do Tecido Nervoso/genética , Corrida , Seleção Genética , Animais , Cães/metabolismo , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo
20.
BMC Cancer ; 20(1): 251, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209086

RESUMO

BACKGROUND: Invasive urothelial carcinoma (iUC) is highly similar between dogs and humans in terms of pathologic presentation, molecular subtypes, response to treatment and age at onset. Thus, the dog is an established and relevant model for testing and development of targeted drugs benefiting both canine and human patients. We sought to identify gene expression patterns associated with two primary types of canine iUC tumors: those that express a common somatic mutation in the BRAF gene, and those that do not. METHODS: We performed RNAseq on tumor and normal tissues from pet dogs. Analysis of differential expression and clustering, and positional and individual expression was used to develop gene set enrichment profiles distinguishing iUC tumors with and without BRAFV595E mutations, as well as genomic regions harboring excessive numbers of dysregulated genes. RESULTS: We identified two expression clusters that are defined by the presence/absence of a BRAFV595E (BRAFV600E in humans) somatic mutation. BRAFV595E tumors shared significantly more dysregulated genes than BRAF wild-type tumors, and vice versa, with 398 genes differentiating the two clusters. Key genes fall into clades of limited function: tissue development, cell cycle regulation, immune response, and membrane transport. The genomic site with highest number of dysregulated genes overall lies in a locus corresponding to human chromosome 8q24, a region frequently amplified in human urothelial cancers. CONCLUSIONS: These data identify critical sets of genes that are differently regulated in association with an activating mutation in the MAPK/ERK pathway in canine iUC tumors. The experiments also highlight the value of the canine system in identifying expression patterns associated with a common, shared cancer.


Assuntos
Carcinoma de Células de Transição/veterinária , Doenças do Cão/genética , Perfilação da Expressão Gênica/veterinária , Redes Reguladoras de Genes , Neoplasias da Bexiga Urinária/veterinária , Animais , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/patologia , Mapeamento Cromossômico , Cromossomos Humanos Par 8/genética , Doenças do Cão/patologia , Cães , Feminino , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Mutação , Estadiamento de Neoplasias , Proteínas Proto-Oncogênicas B-raf/genética , Análise de Sequência de RNA/veterinária , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA