Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1152: 401-411, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456196

RESUMO

Understanding breast cancer cell proteolysis and migration is crucial for developing novel therapies to prevent local and distant metastases. Human cancer cells utilize many biological functions comparable to those observed during embryogenesis conferring the cancer cells with survival advantages. One such advantage is the ability to secrete proteases into the tumor microenvironment in order to remodel the extracellular matrix to facilitate migration. These proteases degrade the extracellular matrix, which initially functions as a barrier to cancer cell escape from their site of origin. The extracellular matrix also functions as a reservoir for growth factors that can be released by the secreted proteases and thereby further aid tumor growth and progression. Other survival advantages of tumor cells include: the ability to utilize multiple modes of motility, thrive in acidic microenvironments, and the tumor cell's ability to hijack stromal and immune cells to foster their own migration and survival. In order to reduce metastasis, we must focus our efforts on addressing the survival advantages that tumor cells have acquired.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular , Proteólise , Matriz Extracelular , Feminino , Humanos , Peptídeo Hidrolases/metabolismo , Microambiente Tumoral
2.
BMC Cancer ; 15: 584, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26268945

RESUMO

BACKGROUND: Ductal carcinoma in situ (DCIS) is a non-obligate precursor lesion of invasive breast cancer in which approximately half the patients will progress to invasive cancer. Gaining a better understanding of DCIS progression may reduce overtreatment of patients. Expression of the pro-inflammatory cytokine interleukin-6 increases with pathological stage and grade, and is associated with poorer prognosis in breast cancer patients. Carcinoma associated fibroblasts (CAFs), which are present in the stroma of DCIS patients are known to secrete pro-inflammatory cytokines and promote tumor progression. METHODS: We hypothesized that IL-6 paracrine signaling between DCIS cells and CAFs mediates DCIS proliferation and migration. To test this hypothesis, we utilized the mammary architecture and microenvironment engineering or MAME model to study the interactions between human breast CAFs and human DCIS cells in 3D over time. We specifically inhibited autocrine and paracrine IL-6 signaling to determine its contribution to early stage tumor progression. RESULTS: Here, DCIS cells formed multicellular structures that exhibited increased proliferation and migration when cultured with CAFs. Treatment with an IL-6 neutralizing antibody inhibited growth and migration of the multicellular structures. Moreover, selective knockdown of IL-6 in CAFs, but not in DCIS cells, abrogated the migratory phenotype. CONCLUSION: Our results suggest that paracrine IL-6 signaling between preinvasive DCIS cells and stromal CAFs represent an important factor in the initiation of DCIS progression to invasive breast carcinoma.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Fibroblastos/metabolismo , Interleucina-6/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Invasividade Neoplásica/patologia
3.
Cancers (Basel) ; 16(16)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39199680

RESUMO

This study evaluated the paracrine signaling between breast carcinoma-associated fibroblasts (CAFs) and breast cancer (BCa) cells. Resolving cell-cell communication in the BCa tumor microenvironment (TME) will aid the development of new therapeutics. Here, we utilized our patented TAME (tissue architecture and microenvironment engineering) 3D culture microphysiological system, which is a suitable pathomimetic avatar for the study of the BCa TME. We cultured in 3D BCa cells and CAFs either alone or together in cocultures and found that when cocultured, CAFs enhanced the invasive characteristics of tumor cells, as shown by increased proliferation and spread of tumor cells into the surrounding matrix. Secretome analysis from 3D cultures revealed a relatively high secretion of IL-6 by CAFs. A marked increase in the secretion of granulocyte macrophage-colony stimulating factor (GM-CSF) when carcinoma cells and CAFs were in coculture was also observed. We theorized that the CAF-secreted IL-6 functions in a paracrine manner to induce GM-CSF expression and secretion from carcinoma cells. This was confirmed by evaluating the activation of STAT3 and gene expression of GM-CSF in carcinoma cells exposed to CAF-conditioned media (CAF-CM). In addition, the treatment of CAFs with BCa cell-CM yielded a brief upregulation of GM-CSF followed by a marked decrease, indicating a tightly regulated control of GM-CSF in CAFs. Secretion of IL-6 from CAFs drives the activation of STAT3 in BCa cells, which in turn drives the expression and secretion of GM-CSF. As a result, CAFs exposed to BCa cell-secreted GM-CSF upregulate inflammation-associated genes such as IL-6, IL-6R and IL-8, thereby forming a positive feedback loop. We propose that the tight regulation of GM-CSF in CAFs may be a novel regulatory pathway to target for disrupting the CAF:BCa cell symbiotic relationship. These data provide yet another piece of the cell-cell communication network governing the BCa TME.

4.
Postdoc J ; 2(3): 7-16, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27631019

RESUMO

CCL20 or MIP3α is a small ~8 kDa protein primarily expressed in the liver, colon, prostate, cervix, and skin. The cellular receptor for CCL20 is CCR6. CCl20 unlike many other cytokines only binds CCR6, making the CCL20/CCR6 pathway an attractive drug target. Since the initial discovery of CCL20 in the early 1990's, there has been an increase in the evidence implicating the chemokine and its receptor in a number of diseases, including rheumatoid arthritis and human immunodeficiency virus infection. CCL20 has also been linked to malignancies such as ovarian, colorectal and pancreatic cancers. CCL20 can also attract tumor-promoting immune-suppressive cells to the tumor microenvironment, which may contribute to the immune evasive potential of the tumor and tumor progression.

5.
PLoS One ; 9(1): e81126, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24404125

RESUMO

TNBC is an aggressive breast cancer subtype that does not express hormone receptors (estrogen and progesterone receptors, ER and PR) or amplified human epidermal growth factor receptor type 2 (HER2), and there currently exist no targeted therapies effective against it. Consequently, finding new molecular targets in triple negative breast cancer (TNBC) is critical to improving patient outcomes. Previously, we have detected the expression of metabotropic glutamate receptor-1 (gene: GRM1; protein: mGluR1) in TNBC and observed that targeting glutamatergic signaling inhibits TNBC growth both in vitro and in vivo. In this study, we explored how mGluR1 contributes to TNBC progression, using the isogenic MCF10 progression series, which models breast carcinogenesis from nontransformed epithelium to malignant basal-like breast cancer. We observed that mGluR1 is expressed in human breast cancer and that in MCF10A cells, which model nontransformed mammary epithelium, but not in MCF10AT1 cells, which model atypical ductal hyperplasia, mGluR1 overexpression results in increased proliferation, anchorage-independent growth, and invasiveness. In contrast, mGluR1 knockdown results in a decrease in these activities in malignant MCF10CA1d cells. Similarly, pharmacologic inhibition of glutamatergic signaling in MCF10CA1d cells results in a decrease in proliferation and anchorage-independent growth. Finally, transduction of MCF10AT1 cells, which express c-Ha-ras, using a lentiviral construct expressing GRM1 results in transformation to carcinoma in 90% of resultant xenografts. We conclude that mGluR1 cooperates with other factors in hyperplastic mammary epithelium to contribute to TNBC progression and therefore propose that glutamatergic signaling represents a promising new molecular target for TNBC therapy.


Assuntos
Receptores de Glutamato Metabotrópico/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Expressão Gênica , Inativação Gênica , Xenoenxertos , Humanos , Camundongos , Receptores de Glutamato Metabotrópico/genética , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA